
p0573r0 - Manipulators for C++ Synchronized Buffered Ostream
(see p0053)

Peter Sommerlad, Pablo Halpern

2017-07-15

Document Number: p0573r0
Date: 2017-07-15
Project: Programming Language C++
Audience: LEWG (LWG to re-check the wording)

1 Introduction

After Kona, Pablo asked me to add ostream manipulators for basic_osyncstream to allow users
of such streams to modify their flushing behavior, when those stream objects are only know via
ostream& down the call chain.

The wording for these manipulators was reviewed by LWG in Toronto (p0053r5), but their names
were never discussed in LEWG, therefore I followed Jeffrey’s suggestion to split them from p0053r6.
For more information see that paper.

1.1 Items to be discussed by LEWG

— Naming of the manipulators

— Should the manipulators be in header <osyncstream> instead of globally available in <ostream>
as are flush and endl? Putting them in <osyncstream> (only), will increase dependence
on basic_osyncstream, where basic_syncbuf would suffice for inline implementation of the
manipulators. That dependency could even be mitigated by non-inline implementations of the
manipulators (providing their instantiations for the supported character types as is done with
many other things in the iostream implementaions).

— re-check wording (done be LWG in Toronto, but minor adaptations were made, because of
LWG’s feedback. Pablo is OK with the edits)

— What should be the delivery vehicle for this feature: C++20 or the concurrency TS? I believe
both should be addressed when moved, like with p0053.

1

jhs
Typewritten Text
(document number is actually P0753R0)



2 p0573r0 2017-07-15

2 Wording

This wording is relative to the current C++ working draft and refers to the specification in p0053r6.
It could be integrated into a Concurrency TS accordingly when p0053 gets adopted.

2.1 30.7.5.4 Standard basic_ostream manipulators [ostream.manip]
Add the following three manipulators.

template <class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

1 Effects: If os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator> pointer buf, calls
buf->set_emit_on_sync(true). Otherwise this manipulator has no effect. [Note: To work
around the issue that the Allocator template argument can not be deduced, implementations
can introduce an intermediate base class to basic_osyncbuf that takes care its emit_on_sync
flag. —end note ]

2 Returns: os.

template <class charT, class traits>
basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

3 Effects: If os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator> pointer buf, calls
buf->set_emit_on_sync(false). Otherwise this manipulator has no effect.

4 Returns: os.

template <class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

5 Effects: flush(os). Further if os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator>
pointer buf, calls buf->emit().

6 Returns: os.

2.2 Implementation
An example implementation is availabile on https://github.com/PeterSommerlad/SC22WG21_
Papers/tree/master/workspace/p0053_basic_osyncstreambuf

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0053_basic_osyncstreambuf
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0053_basic_osyncstreambuf

	1 Introduction
	1.1 Items to be discussed by LEWG

	2 Wording
	2.1 30.7.5.4 Standard basic_ostream manipulators [ostream.manip]
	2.2 Implementation




