
Document Number: P0749R0
Revises: P0714
Date: 2017-07-27
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org
Re: Working Draft, Extensions to C ++ for Modules, n4681

Namespace Pervasiveness & Modules
Nathan Sidwell

This paper discusses how namespace names might implicitly pervade the program. While the modules-
ts claims not to make changes to how namespaces may interact, modules, at the very least can lead, to
some unexpected behaviours. Those might or might not be desirable.

1 Background
P714r0 was presented at Toronto'17, and subsequent discussion showed that some important cases had
been ignored. This paper reformulates the examples anew.

2 Non-Module Existing Behaviour
The current standard defines consistency across translation units as follows:

[6.5,basic.link]/9 Two names that are the same (Clause 6) and that are declared in different
scopes shall denote the same variable, function, type, template or namespace if …

[6.5,basic.link]/10 After all adjustments of types (during which typedefs (10.1.3) are
replaced by their definitions), the types specified by all declarations referring to a given
variable or function shall be identical, except that declarations for an array object can
specify array types that differ by the presence or absence of a major array bound (11.3.4). A
violation of this rule on type identity does not require a diagnostic.

Note that there is no requirement for the same name to refer to the same kind of entity – only that if
they do, the entities must be consistent.

Programs are often able to define different kinds of entities with the same name1 in different translation
units. That is due to name mangling being a common implementation to represent nested names and
function overload sets at the object file level. Further, in the case of namespaces and named types, there
is no object-file symbol for the namespace or type itself – such entities only appear as part of the name
of some other entity. Thus traditional linker technology never encounters a duplicate symbol.

1 Unless otherwise specified, this paper uses the shorthand ‘name’ to refer to the more general concept of a name in a
specific scope, or qualified-id.

mailto:nathan@acm.org

The following two translation units behave satisfactorily, because of the above implementation scheme,
in a single program even though formal language semantics make it ill-formed:

// Translation unit #A part of library #1
namespace MyInternal {
 // stuff
}

and

// Translation unit #B part of library #2
void MyInternal (void);

While it might be undesirable for the above example to work, it is undeniable that the the following
must be compatible with either of the above two:

// Translation unit #C, part of library #3
static void MyInternal (void);

As the function declaration in TU #C has internal linkage, it is distinct from the declarations of the
same name in TUs #A and #B.2

3 Exporting Namespaces
The modules-ts specifies that namespaces with external linkage are always exported:

[10.3,basic.namespace]/1 A namespace with external linkage is always exported regardless
of whether any of its namespace-definition is introduced by export.

It also specifies that non-exported imports are not transitive:3

[10.7.3,dcl.module.export]/1 An exported module-import-declaration nominating a module
M’ in the purview of a module M makes all exported names of M’ visible to any translation
unit importing M. [Note: A module interface unit (for a module M) containing an import-
declaration does not make the imported names transitively visible to translation units
importing the module M. — end note]

Note that the first quoted paragraph refers to a ‘namespace’ not a namespace-definition. These two
requirements have not immediately obvious outcomes. Consider:

// Translation unit #D
export module D;
namespace N {
 export class X {…}; // #D1

2 Implementations will still typically give it the same mangled name as that for translation unit #B’s declaration, but the
object-file symbol will have local, rather than global, visibility.

3 Paper p0731 suggests clarifying edits to this paragraph. The interpretation used in this paper is that documented in
p0731.

 export int Baz (X const &); // #D2
}

// Translation unit #E
export module E;
import D;
export N::X Frob (); // #E1

Note that the declaration of Frob at #E1 uses a type that is not itself reexported from module E. This

does not violate the requirements of:

[10.7.1,module.dcl.interface]/2 If that declaration introduces an entity with a non-dependent
type, then that type shall have external linkage or shall involve only types with external
linkage

I shall use Frob in a later example.

Is namespace N (but not its contents) implicitly reexported by module E or not? (Answer, it is not).

3.1 No Implicit Reexport
Not implicitly reexporting namespaces encountered solely from imported modules is consistent with
[dcl.module.export]/1 (but contradicts [basic.namespace]/1). It will permit the following import of
module E:

// Translation unit #F
import E;
static int N (); // #F1

As namespace N is not exported by E, the declaration of N at #F1 is well formed. As it has internal

linkage, there is no conflict combining translation units #D, #E & #F in a single program.

However, the namespace N must still exist within the compilation of translation unit #F. Depending on

module E’s other exports it might become visible via types used in ADL or type inference. For
instance:

// Translation unit #G
import E;
decltype (Frob()) x; // #G1 type N::X@D
int y = Baz (x); // #G2 N::Baz@D found by ADL

We have created a variable, x, using decltype to get hold of N::X. Then used ADL to search the

partitions of N visible to N::X defined in module D. While perhaps surprising, this is not completely

new behaviour. An analagous situation occurs with private access of class members:

class Outer {
 class Inner { };
 public:
 static Inner Frob ();
};
decltype (Outer::Frob ()) x2;

Although Outer::Inner is a private member, it is exposed in the return type of public member

Outer::Frob. The same decltype trick can be used gain access to it.

Due to the typical linker and mangling implementations described above, there should be no confusion
at the binary file level between namespace N and other entities named N.

This non-reexport behaviour is most similar to non-modules source bases.

3.2 Implicit Reexport
Implicitly reexporting namespaces is an implication of the literal wording of [basic.namespace]/1, but
of course contradicts [dcl.module.export]/1. The above example would become ill-formed, with the

declaration of N at #F1 conflicting with the namespace implicitly brought in by importing module E.

Such reexport would still require the decltype trick of translation unit #G to get at the contents of

module D’s namespace partition of N. It would make the translation unit #E above ill-formed, which is

undesirable.

4 Proposal
The modules-ts should be clear that:

• There is no implicit re-export of a namespace.

This is the original design intent, and editorial changes have altered the design in an unintended
manner.

4.1 Changes to basic.namespace [10.3]
Alter the new wording appended to [basic.namespace]/1 as follows:

… A namespace with external linkage introduced by a namespace-definition is always
exported regardless of whether any of its namespace-definitions is introduced by export.
[Note: There is no way to define a namespace with module linkage. — end note] …

This change makes it clear that it is namespace-definitions that create exported namespaces, and that
the export is just as any other exported declaration.

5 Acknowledgements
I thank Gaby dos Reis <gdr@microsoft.com> and Gor Nishanov <gorn@microsoft.com> for drafting
review.

mailto:gorn@microsoft.com

	1 Background
	2 Non-Module Existing Behaviour
	3 Exporting Namespaces
	3.1 No Implicit Reexport
	3.2 Implicit Reexport

	4 Proposal
	4.1 Changes to basic.namespace [10.3]

	5 Acknowledgements

