
Doc. no.: P0684R0
Date: 2017-06-19
Reply to: Titus Winters, Bjarne Stroustrup, Daveed Vandevoorde, Beman Dawes,

Michael Wong, Howard Hinnant
Audience: C++ Standards Committee

C++ Stability, Velocity, and Deployment
Plans [R0]

Problems with stability, velocity, and deployment of the C++ programming language as it
evolves are identified. Policies are proposed to mitigate those problems.

Introduction
Over the past few years, the committee has increasingly demonstrated a lack of agreement on
priorities. As a result, many of the following questions have arisen in committee discussions:

● Is C++ a language of exciting new features?
● Is C++ a language known for great stability over a long period?
● Do we believe that upgrading to a new language version should be effortless?
● If so, how do we reconcile those effortless upgrades with a practical need to evolve the

language?
● If we instead prioritize stability over all else, are we bound to move slowly - only making

a change when we are certain it is correct and will never need future fixes?

It seems that members of the committee (and indeed the authors of this paper) have held
differing (perhaps even inconsistent) positions on these questions. In this position paper we aim
to discuss the themes we've seen and heard on this topic in committee meetings, how those
match our actual experience, and propose a concrete policy that the committee as a whole
could adopt providing both rights and responsibilities for users of the language.

In so doing, we hope to change from the normal state to an improved state where the committee
has a more coherent direction, rather than Brownian Motion in action.

Present Policy and Practice
While there is no concrete policy written down as part of the standard itself, we believe we could
benefit from such a policy and more specifically, many committee members would agree that
the current policy is roughly:

New versions of the standard will not change the behavior of existing well-behaved user
code. In rare instances a standard change may cause build breaks, and silent changes
should be even rarer. All changes should in principle be statically detectable. ABI
changes should be avoided as long as possible, and be as infrequent as possible.

Note that much hangs on the definition of "well-behaved user code." Currently the standard
carves out a few things as undefined behavior (Please see SG13, Undefined Behavior) with the
intent of allowing for future changes without breakage. This includes (but is not limited to)
"taking the address of a member function of a type from namespace std is UB”, as well as more
commonly-known things like broad prohibitions on adding names to namespace std. Do these
prohibitions suffice to avoid breakage? Of course not. In many cases they are poorly publicized,
but more fundamentally we make changes that could even break those users that do obey the
few published prohibitions. For instance, users may still rely upon “using namespace std” and
write in the global namespace - any overlap in new names in std and their global namespace is
an immediate break. Using the global namespace is not forbidden. Nor are using directives.
What gives us the "right" to break such code?

More subtly, with SFINAE and existing template metaprogramming facilities, there is sufficient
introspection in the language already to (in theory) have runtime/semantic dependence on
nearly any library or language feature. Nothing in the standard declares it to be UB or otherwise
gives the committee the right to break code that relies on things like "vector::emplace_back
returns void" but you can certainly imagine constructing code that relies on that through
metaprogramming trickery. We pretty clearly do not consider that behavior "in bounds" -
metaprogramming users do not have an expectation of free upgrades between language
versions. What gives us the "right" to break such metaprogramming code?

In a completely different vein: When was the last time that your organization took a compiler
update without having to fix your codebase? Even a minor compiler release tends to require
some effort, including extensive testing. Changing standard libraries is often near impossible - at
best it is a significant effort. What makes us believe that enabling a new version of the language
is going to be any less effort? Why are we worried about breakages that are likely lower-cost
than updating compiler versions?

Proposal - Velocity, Deployment Plans
We suggest that the level of concern that the committee currently holds for breakage may be ill-
founded - the cost paid during a compiler update stemming from user error is already significant.
We should recognize that all compiler/standard library updates come with some cost - so long
as any intentional breakage on our part is expected to be dominated by those existing costs, we
are still serving our users well.

Procedurally, a change to the toolchain (be it compiler update or language version change) is a
task that our users are already generally tackling as an explicit task — someone or some team

is assigned to do this. For language updates, that upgrade period is the exact time that we want
to provide diagnostics and refactoring tools designed to make the upgrade process low-risk and
low-effort. Consider the cost reduction for users if we expect them to use the following process
when updating:

1. Update to a current version of the compiler without changing language versions. For
example, update to a current version of gcc while staying at C++14, rather than updating
to current gcc and updating to C++17 mode at the same time.

2. Turn on diagnostics in that current compiler version to identify places where behavior will
change in the next language version.

3. Evaluate those changes, resolving as necessary. For risky behavior changes to the
language or the library, this requires providing C++(n-1)-compatible mechanisms to opt-
out of the change. For example, in the case of synthesizing operator <=>, explicitly
deleting a comparison operator would suppress the new behavior in the new language
mode.

4. Turn on the new language mode.

This isn't a magic wand — we will still need to find ways to have pre/post compatibility and
consider cases where the necessary updates cannot be done in sync (libraries with varying
release schedules), but it is potentially a significant power that the committee is lacking right
now.
In such a world, we argue that it is far easier to make substantive changes to the language. For
example, if we decide that synthesizing operator <=> is the superior long-term design, we can
ask that compilers in C++(n-1) mode provide a diagnostic for types that will have their behavior
changed by the new synthesis with an easy mechanism to opt out (=delete). This hopefully
allows for a smooth rollout of more-invasive changes than we currently feel safe accepting. In
such a world, we can perhaps stop arguing about the safety of such a change and focus more
on the long-term value of it and the safety of the deployment strategy. In trade, we have to
recognize what is already true: upgrades are not free. If we focus on understanding and
minimizing the upgrade cost, we can find a balance between stability and velocity that keeps
most users happy.
This would effectively update the compatibility promise of the standard relative to the earlier
phrasing:

New versions of the standard will not change the behavior of existing well-behaved user
code. In rare instances a standard change may cause build breaks, and silent changes
should be even rarer. All behavior changes should be statically detectable in the
previous language version and have previous-version-compatible opt-out
mechanics to preserve existing behavior. ABI changes should be avoided as long as
possible, and be as infrequent as possible.

In more detail, we can consider the following examples:
● Adding a keyword – easily detectable, old code breaks if it uses the new keyword as an

identifier. This generally cannot change meaning of old code, it can only make it ill

formed. This is easy to detect in a C++(n-1) mode - an engineer updating a codebase to
C++(n) only has to find-replace places where the new keyword is used and use a
different identifier.

● Adding a public data member to a standard-library class – easily detectable by use, but
could hide public member from a base class. Can change meaning of old code.

● Adding a private data member to a standard-library class – detectable (SFINAE or
sizeof), but the set of private members is unspecified, so relying on a specific layout is
UB (e.g., debug and optimized versions may differ). No diagnostic required.

● Changing the signature of a standard-library function call (e.g., changing the return type
from void to non-void or changing an argument type from int to double) – detectable but
it could change the resolution of a call. Can change meaning of old code – mostly
through implicit conversion to standard / fundamental types. Can be identified in C++(n-
1) mode, and opt-out is clear – provide explicit conversion to the C++(n-1) format,
presumably ensuring compatibility.

● Changing the meaning of a standard-library function call – not detectable. Can change
meaning of old code. Don’t do that without a rollout plan.

● Changing the constraints of the implementation of a standard-library function call – not
detectable. To do that we’d need a trait, feature macro, or other trickery. (Generally we
all know not to add constraints to existing APIs.)

● Adding an overload to the standard library – detectable. Can change meaning of old
code. We’d want a warning for each call for which the overload resolution changed.

● Changing rules (e.g., lookup rules or adding generated functions) to allow more
candidates for overload – detectable. Can change meaning of old code. We’d want a
warning for each call for which the overload resolution changed.

Building a collection of examples would make it easier to use the proposed rule for clear user
requirements.

Proposal - Clear User Requirements
However, in some cases the above does not suffice: we have still not addressed our lack of
guarantees for what types of breaks are considered relevant. Let’s consider the simple case of
std::accumulate and Peter Sommerlad's p0616. As specified, std::accumulate is O(n^2) when
invoked on anything with an O(n) operator+, like std::string. This is because the accumulated
object is copied at each step, rather than moved - by specification. The only code anywhere that
can be broken by making changes to that specification is code with user-defined types where
move is not an optimization of copy - and yet we are fearful to proceed. A "safe" deployment
plan for this issue would likely require two language versions: one to introduce a
std::accumulate variant that explicitly chooses the existing copy behavior, and a second to
change the default - and with such a plan we are still left with both versions indefinitely. Or, we
can collectively act boldly and say "Anyone broken by this change deserves it", which is likely
true. Still, it would be more satisfying and healthy for the community in the long term to provide

clear guidance - what exactly is it that we expect from users? Why do they "deserve it" to be
broken by such a change?
We believe the community would be well served if we defined what is expected of "well-
behaved" user code. With respect to the std::accumulate example, this might include "The
standard library assumes that if a user-defined type has both move constructor and copy
constructor, the move constructor is semantically equivalent and no less efficient." More
generally this would include discussions of namespace std and metaprogramming/SFINAE
guarantees (specifically, our lack of guarantees). Concepts could address many such examples.

This would effectively update the compatibility promise of the standard:

New versions of the standard will not change the behavior of existing well-behaved user
code as defined by (forthcoming rules). In rare instances a standard change may
cause build breaks, and silent changes should be even rarer. All changes should in
principle be statically detectable. ABI changes should be avoided as long as possible,
and be as infrequent as possible.

The particulars of the rules for well-behaved user code can (and should) be discussed at length,
but could include some or all of the following. Note in particular that users of the standard are
not special in this: abuse of these rules is generally bad usage for any library.

● Do not define names in namespace std (or namespaces of libraries you do not own),
except as specifically directed for library extension points.

○ Defining names in foreign namespaces is a break when a real API of that name
is added. Preventing addition of new entries in libraries you depend on is
counterproductive.

● Do not add things to the global namespace especially if you have a namespace-scope
“using namespace std” directive in your code.

○ This would also prevent introduction of new names in namespace std.
● Do not forward declare symbols from namespace std.

○ Forward declarations require that the signature of that API does not change -
adding new default parameters to functions or new default template parameters
to template definitions will be a build break.

● Do not take the address of functions or member functions in namespace std. More
generally, do not depend on the signature of standard APIs - assume only that it is
callable as specified.

○ Adding default parameters or new overloads will break code that does this.
● Do not depend on the presence or absence of APIs via template metaprogramming

methods, nor metaprogram properties of standard types (layout, size of, alignment of).
● If a user-defined type defines both copy and move operations, move should be

semantically equivalent to copy on the target AND no less efficient than the copy.
○ If the standard optimizes library operations or additional language rules to make

better use of move, this should be good for everyone. If you define exotic types
where move is less efficient or semantically different than copy, you will be
broken by such changes.

Proposal - Our Promise To Users
AKA The C++ Programmers’ Bill of Rights

We, the ISO C++ Standards Committee, promise to the best of our ability to deliver the
following, assuming user code adheres to the above

1. Compile-time stability: Every change in behavior in a new version of the standard is
detectable by a compiler for the previous version.

2. Link-time stability: ABI breakage is avoided except in very rare cases, which will be well
documented and supported by a written rationale.

3. Compiler performance stability: Changes will not imply significant added compile-time
costs for existing code.

4. Performance stability: Changes will not imply added run-time costs to existing code.
5. Progress: Every revision of the standard will offer improved support for some significant

programming activity or community.
6. Simplicity: Every revision of the standard will offer some simplification of some significant

programming activity.
7. Timeliness: The next revision of the standard will be shipped on time according to a

published schedule.
Note “to the best of our abilities”. These are guiding principles, rather than executable
statements. For example, if I add a function to a header file, the compilation of code that
includes that header will slow down imperceptibly. That’s understood and could be argued not to
be “existing code” because of the change. Adding enormous amounts of code to a header so
that compilation slowed down noticeably would be another matter.

	C++ Stability, Velocity, and Deployment Plans [R0]
	Introduction

	Present Policy and Practice
	Proposal - Velocity, Deployment Plans
	Proposal - Clear User Requirements
	Proposal - Our Promise To Users

