
P0634
EWG
2017-03-05
Daveed Vandevoorde (daveed@edg.com)

If X<T>::Y — where T is a template parameter — is to denote a type, it must be
preceded by the keyword typename ; otherwise, it is assumed to denote a name
producing an expression. There are currently two notable exceptions to this rule:
base-specifiers and mem-initializer-ids. For example:

template<class T> struct D: T::B { // No `typename` required here
.
};

Clearly, no typename is needed for this base-specifier because nothing but a
type is possible in that context. However, there are several other places where we
know only a type is possible and asking programmers to nonetheless specify the
 typename keyword feels like a waste of source code space (and is detrimental to
readability).

I therefore propose we make typename optional in the following places:

The top-level decl-specifier-seq of a simple-declaration in namespace scope.
The top-level decl-specifier-seq of a member-declaration (in class scope).
The top-level decl-specifier-seq of a parameter-declaration in a class or
namespace scope, or in a lambda.
A trailing-return-type.
The defining-type-id of an alias declaration.
The type-id of a static_cast , const_cast , reinterpret_cast , or
 dynamic_cast .
The default argument of a type-parameter of a template.
The type-id or new-type-id or a new-expression.

Down with typename !

mailto:daveed@edg.com
file:///Users/daveed/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-1-2-p822_toc_0

With the changes above, we’d be able — for example — to write

template<class T> T::R f(T::P);
template<class T> struct S {
 using Ptr = PtrTraits<T>::Ptr;
 T::R f(T::P p) {
 return static_cast<T::R>(p);
 }
 auto g() -> S<T*>::Ptr;
};

instead of the currently-required:

template<class T> typename T::R f(typename T::P);
template<class T> struct S {
 using Ptr = typename PtrTraits<T>::Ptr;
 typename T::R f(typename T::P p) {
 return static_cast<typename T::R>℗;
 }
 auto g() -> typename S<T*>::Ptr;
};

A cursory read through some common standard library headers suggests that by-
far most occurrences of typename for the purpose of disambiguating type names
from other names can be eliminated with these new rules.

The EDG front end has an implicit typename mode to emulate pre-C++98
compilers that didn’t parse templates in their generic form. Although that mode
doesn’t exactly cover the contexts where I’m proposing to make typename
optional, the implementation effort is similar (and not excessively expensive).

