
N. Josuttis: P0599R0: noexcept for hash functions (US140)

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0599R0
Date: 2017-01-14
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LWG
Prev. Version: ----

noexcept	for	Hash	Functions	
For C++17; US 140 requests:

Specializations of std::hash for arithmetic, pointer, and standard library types should not be
allowed to throw. The constructors, assignment operators, and function call operator should all be
marked as noexcept. It might be reasonable to consider making this a binding requirement on
user specializations of the hash template as well (in p1) but that may be big a change to make at
this stage.

Discussing it informally in LWG seems to result in the following conclusion:

hash should be
noexcept?

Remark

hash<error_code> yes

hash<error_condition> yes

hash<optional<T>> no same hash as with underlying type

hash<variant<Types...>> no

hash<monostate> yes

hash<bitset<N>> yes

hash<unique_ptr<T, D>> no same hash as for underlying raw pointer

hash<shared_ptr<T>> no same hash as for underlying raw pointer

hash<NUMERIC> yes for all integral types (incl. bool and char) and floating-point types

hash<T*> yes (uses the address (can't look at the value because it might change))

hash<type_index> yes same as hash_code() of passed index

hash<string> yes

hash<u16string> yes

hash<u32string> yes

hash<wstring> yes

hash<string_view> yes guarantee to match string hash value

hash<u16string_view> yes guarantee to match u16string hash value

hash<u32string_view> yes guarantee to match u32string hash value

hash<wstring_view> yes guarantee to match wstring hash value

hash<vector<bool, Allocator>> no

hash<thread::id> yes

That is, for wrapper types we do not require it (yet).

For this reason, this paper proposes:

a) For the moment not to require to mark all hash specializations as noexcept
b) Add the no except requirement for the hash functions as stated above.

N. Josuttis: P0599R0: noexcept for hash functions (US140)

 2

Proposed	Wording	
 (All against N4618)

19.5.6 System error hash support [syserr.hash]

§1 (hash for error_code and error_condition) change:

 The specializations are enabled (20.14.14) and hash functions are marked noexcept.

20.7.11 Hash support [variant.hash]

§2 (hash for monostate):

 The specialization is enabled (20.14.14) and the hash function is marked noexcept.

20.9.3 bitset hash support [bitset.hash]

§1 (for bitset):

 The specialization is enabled (20.14.14) and the hash function is marked noexcept.

20.14.14 Class template hash [unord.hash]

§2 (general statement):

… Each header that declares the template hash provides enabled specializations of hash for nullptr_t and
all cv-unqualified arithmetic, enumeration, and pointer types, for which the hash functions are marked
noexcept.

20.18.4 Hash support [type.index.hash]

For (type_index), add §2:

The specializations are enabled (20.14.14) and the hash functions are marked noexcept.

21.3.4 Hash support [basic.string.hash]

for strings, add §2:

 The specialization are enabled (20.14.14) and the hash function is marked noexcept

21.4.5 Hash support [string.view.hash]

§1 (for string_view’s):

 The specializations are is enabled (20.14.14) and the hash functions are marked noexcept.

30.3.1.1 Class thread::id [thread.thread.id]

§14 (for thread::id):

The specialization is enabled (20.14.14) the hash function is marked noexcept..

