
Doc.	No:	 P0590R0	
Date:		 2017-02-05	
Group:		 SG7	
Contact:	 Andrew	Sutton	<asutton@uakron.edu>	

Herb	Sutter	<hsutter@microsoft.com>	
	

A	design	for	static	reflection	
This	document	gives	an	overview	of	the	design	and	implementation	of	static	reflection	for	C++.	
The	design	presented	here	is	closely	related	to	the	approach	described	in	P0385R1,	except	that	
reflections	are	regular	objects	and	not	types.	This	enables	a	style	of	metaprogramming	without	
the	 need	 for	 template	metaprogramming.	 This	 paper	 presents	 a	 set	 of	motivating	 examples,	
describes	how	the	feature	is	implemented	in	Clang,	and	includes	discussion	of	related	work.		

Table	of	Contents	

Introduction	and	examples	...	1	
Logging	...	1	
Generation	of	common	functions	...	2	
Advanced	constraints	...	3	
Stringification	...	3	

Implementation	...	4	
The	reflection	operator	..	4	
Reflected	properties	...	5	
Filtered	sequences	...	10	

Discussion	...	10	
Related	work	..	10	
Missing	features	...	12	

Specification	..	12	
2.	Lexical	conventions	..	12	
5.	Expressions	..	12	
20.15.	Reflection	concepts	[meta.reflect]	...	13	

	

Introduction	and	examples	
Static	reflection	enables	programmers	to	write	code	that	queries	the	compile-time	properties	of	
types	and	declarations1.	These	queries	can	be	used	in	conjunction	with	traditional	programming	
techniques	to	support	a	number	of	common	use	cases.	The	examples	presented	in	this	section	
are	adapted	from	those	presented	in	P0385R1.	

Logging	
The	 need	 to	 generate	 readable	 declaration	 names	 for	 the	 purpose	 of	 logging,	 tracing,	 and	
debugging	is	a	frequent	concern.	Typical	approaches	require	the	use	demangling	typeid	names	

																																																								
1	Reflecting	expressions	is	reserved	for	future	work.	

through	 some	 compiler-specific	 ABI-provided	 library.	 Both	 of	 these	 operations	 incur	 runtime	
overhead.	

With	 static	 reflection,	 we	 should	 be	 able	 to	 synthesize	 human	 readable	 declaration	 names	
without	the	associated	runtime	cost.	Here	is	how	we	can	do	this:	

template<typename T>
T min(T a, T b) {
 log() << “min” << ‘<’ << $T.qualified_name() << “>(“
 << $a.name() << ‘:’ << $a.type().name() << ‘,’
 << $b.name() << ‘:’ << $b.type().name() << “) = “;
 T r = a < b ? a : b;
 log() << r << ‘\n’;
 return r;
}

The	$	operator	is	the	reflection	operator.	 It	returns	a	class	object	of	unspecified	type,	called	a	
reflection,	that	describes	the	compile-time	properties	of	the	operand	(here	a	type	T).	The	type	of	
a	declaration’s	reflection	is	unique	(i.e.,	$T	has	a	different	type	than	$a).	Note	that	the	operator	
is	applied	only	when	the	algorithm	is	 instantiated;	we	do	not	reflect	properties	of	dependent	
names.	

The	expression	$T.qualified_name()	queries	the	compiler	for	the	qualified	name	of	type	T.	
It	 returns	a	C-string	containing	the	human-readable	name	of	 the	substituted	type.	Strings	are	
only	generated	if	the	function	is	called;	they	are	not	added	to	the	translation	unit	unless	used.	

Generation	of	common	functions	
The	need	to	generate	boilerplate	code	for	functions	on	simple	structures	is	a	common	problem.	
It	 appears	 in	 a	 very,	 very	wide	 number	 of	 applications,	 and	 language-based	 solutions	 to	 the	
problem	have	proven	to	be	difficult	to	navigate	through	committee.	For	example,	here	is	a	simple	
class	and	its	associated	hash	function,	based	on	Howard	Hinnant’s	proposal	(N3980):	

struct S {
 int i;
 long l;
 float f;
};

template<HashAlgorithm H>
void hash_append(H& h, S const& s) {
 hash_append(h, s.i);
 hash_append(h, s.l);
 hash_append(h, s.f);
}

For	simple	struct-like	types,	the	definitions	of	these	overloads	follows	a	simple	pattern:	append	
each	member	of	the	struct	to	the	hash	in	their	order	of	declaration.	We	can	use	static	reflection	
to	do	this	for	us.	Here	is	a	generic	algorithm	that	works	for	all	SimpleStruct	types	(defined	in	
the	next	section).	

template<HashAlgorithm H, SimpleStruct T>
void hash_append(H& h, T const& s) {
 for (MemberVariable v : $T.member_variables())
 hash_append(h, s.*(v.pointer()));
}

This	algorithm2	simply	applies	hash_append	to	each	non-static	data	member	of	the	class,	which	
are	accessed	by	 the	 range	expression	$T.member_variables().	 This	 yields	a	 compile-time	
sequence	of	objects	(i.e.,	a	tuple)	that	describe	the	member	variables	of	type	T.		

Here,	MemberVariable	 is	a	 constrained-type-specifier	 from	the	concepts	TS.	Recall	 that	 the	
type	of	reflections	is	an	unspecified	class	type	that	is	unique	to	a	declaration.	However,	all	such	
member	variable	reflections	share	the	same	properties.	In	this	case,	we	can	use	the	pointer()	
method	to	return	a	pointer-to-data-member,	which	can	be	applied	to	access	the	runtime-data	
member	of	the	structure.	

This	 technique	 can	 be	 used	 to	 provide	 specialized	 implementations	 of	 generic	 facilities	 that	
require	the	traversal	of	complex	data	types.	Hashing	is	a	straightforward	example;	equality	and	
order	comparison	are	closely	related	and	left	to	the	reader	as	an	exercise.	

Advanced	constraints	
The	SimpleStruct	concept	in	the	previous	example	is	indicative	of	the	kinds	of	constraints	that	
we	 can	 write	 using	 reflection.	 It	 is	 entirely	 possible	 that	 many	 existing	 type	 traits,	 whose	
definitions	that	rely	on	language	wording,	can	be	replaced	by	library	features	expressing	the	same	
ideas	programmatically.	SimpleStruct	is	such	an	example.	

A	simple	structure	is	a	POD	class	type	with	no	base	classes.	We	might	define	it	like	this:	

template<typename T>
concept bool SimpleStruct() {
 return is_class_v<T> && is_pod_v<T> && $T.bases().empty();
}

The	$T.bases()	method	returns	a	compile-time	sequence	of	base	classes.	For	a	simple	struct,	
this	sequence	must	be	empty3.	

Stringification	
The	generation	of	strings	from	enumerators	is	a	very	common	feature	request.	Current	options	
are	to	define	a	host	of	specialized	functions	that	return	the	string	representations	of	enumerated	
values,	or	macro-based	definitions.	Static	reflection	can	be	used	to	provide	a	simple	three	line	
function	to	generate	the	strings	of	for	all	enumeration	types.	

template<Enum E>
const char* to_string(E value) {
 for (Enumerator e : $E.enumerators())

																																																								
2	This	example	uses	the	tuple-based	for	loop	described	in	P0589R0.	
3	 This	 concept	 is	 probably	 subsumed	 by	 StandardLayout.	 However,	 generic	 algorithms	
requiring	that	concept	would	need	to	account	for	data	members	defined	in	base	classes.	

 if (e.value() == value)
 return e.name();
}

Again,	the	simplicity	of	this	implementation	relies	on	the	tuple-based	for	loop	and	concepts.	We	
can	write	an	equivalent	version	this	function	without	those	features,	but	it’s	quite	a	bit	longer.	

Implementation	
This	 feature	 is	 being	 implemented	 in	 a	 fork	 of	 the	 Clang	 compiler,	 which	 can	 be	 found	 at	
https://github.com/asutton/clang-reflect.	Note	that	this	is	a	work	in	progress.	

The	reflection	operator	
The	 reflection	 operator	 $	 can	 be	 applied	 to	 any	 name	 (variable,	 function,	 parameter,	 type,	
enumerator,	namespace).	It	returns	a	prvalue	class	object	whose	type	is	determined	by	the	entity	
whose	name	follows	the	operator.	The	type	returned	is	a	specialization	of	a	template,	definined	
in	the	meta	namespace,	whose	template	argument	(given	as	X	below)	binds	to	the	compile-time	
definition	of	the	reflected	entity.	The	value	of	this	argument	is	implementation	defined.	

The	mapping	of	entities	to	names	is	given	in	the	following	table:	

Entity	 Reflection	type	

Variable	 meta::variable<X>

Member	variable	 meta::member_variable<X>

Function	 meta::function<X>

Constructor	 meta::constructor<X>

Destructor	 meta::destructor<X>

Member	function	 meta::member_function<X>

Conversion	operator	 meta::conversion<X>

Function	parameter	 meta::parameter<X>

Enumerator	 meta::enumerator<X>

Class	type	 meta::class_type<X>

Union	type	 meta::union_type<X>

Enum	type	 meta::enum_type<X>

Fundamental	type	 meta::fundamental_type<X>

Qualified	type	 meta::qualified_type<X>

Namespace	 meta::ns<X>

Translation	unit	 meta::tu<X>

…	

	

Each	class	in	the	table	above	has	the	following	form:	

template<reflection_t X>
struct reflection-class {
 // member operations
};

The	 reflection_t	 type	 is	 the	 type	 is	 an	 implementation-defined	 handle	 to	 an	 internal	
structure	 in	the	compiler	that	describes	the	reflected	entity.	 In	our	 implementation,	this	 is	an	
integer	type	large	enough	to	hold	a	pointer	to	a	node	in	the	compiler’s	AST4.	When	a	name	is	
reflected,	 the	 AST	 node	 pointer	 is	 converted	 into	 this	 opaque	 representation	 and	 used	 as	 a	
template	 argument	 for	 the	 corresponding	 class	 template	 in	 the	 table	 above.	 That	 is,	 this	
expression	

$main

is	an	alias	for	this	expression,	which	simply	constructs	temporary	object.	

meta::function</*AST-reference-to-main*/>{}

The	opaque	value	for	“AST-reference-to-main”	is	supplied	by	the	implementation.	

Reflected	properties	
The	properties	of	 reflected	entity	depend	on	 its	declaration,	 its	definition,	 the	 language,	 and	
compiler	options.	In	general,	there	are	three	kinds	of	information	that	can	be	requested	of	any	
reflection	

• Specifiers	are	flags	and	values	that	indicate	how	a	declaration	was	written.	
• Attributes	correspond	to	the	written	C++	attributes	of	a	declaration.	
• Traits	are	the	computed	from	specifiers,	attributes,	and	language	rules.	

The	implementation	does	not	currently	support	queries	for	specifiers	or	attributes.	Only	queries	
for	traits	are	supported.	

Reflection	classes	have	no	non-static	data	members.	All	properties	are	defined	as	static	member	
functions	and	variables.	The	properties	of	a	reflection	class	depend	on	the	entity	they	reflect.	
These	can	be	grouped	into	concepts,	defined	by	the	table	below.	

	 	

																																																								
4	This	is	actually	a	node	pointer	where	unused	low-order	bits	contain	a	small	descriptor	describing	
the	kind	of	node	(type,	expression,	or	declaration).	This	is	needed	so	we	can	re-cast	the	reflection	
to	an	object	in	the	appropriate	hierarchy.		

Concept	 Members	

NamedEntity

const char* name()
const char* qualified_name()
ScopeEntity declaration_context()
ScopeEntity lexical_context()
linkage_t linkage()
access_t access()

ScopeEntity Tuple members()

Type NamedEntity
typename type;

UserDefinedType Type, ScopedEnity

MemberType

bool is_complete()
Tuple member_variables()
Tuple member_functions()
Tuple constructors()
Destructor destrutors()

ClassType

MemberType
bool is_polymorphic()
bool is_abstract()
bool is_final()
bool is_empty()

UnionType

EnumType
UserDefinedType
bool is_complete()
bool is_scoped()

TypedEntity auto type()

Variable

NamedEntity, TypedEntity
storage_t storage()
bool is_inline()
bool is_constexpr()
T* pointer()

MemberVariable
NamedEntity, TypedEntity
bool is_mutable()
T C::* pointer()

Function

NamedEntity, TypedEntity
bool is_constexpr()
bool is_noexcept()
bool is_defined()
bool is_inline()
bool is_deleted()

Tuple parameters()
T(*)(...) pointer()

Method

NamedEntity, TypedEntity
bool is_noexcept()
bool is_defined()
bool is_inline()
bool is_deleted()
Tuple parameters()
T (C::*)(...) pointer()

PolymorphicMethod

MemberFunction
bool is_virtual()
bool is_pure_virtual()
bool is_final()
bool is_override()

Constructor

MemberFunction
bool is_constexpr()
bool is_explicit()
bool is_defaulted()
bool is_trivial()

Destructor
PolymorphicMemberFunction
bool is_defaulted()
bool is_trivial()

MemberFunction PolymorphicMethod
bool is_constexpr()

ConversionFunction MemberFunction
bool is_explicit()

Parameter NamedEntity, TypedEntity

Enumerator NamedEntity, TypedEntity
T value()

	

This	 tables	 associates	 a	 concept	 name	with	 a	 set	 of	 required	 concepts,	 partial	 signatures	 for	
member	functions	and,	in	the	case	of	the	Type	concept,	a	nested	type	name.		

	 	

This	 is	an	 initial	concept/class	design	for	the	reflection	hiearchy.	We	will	almost	certainly	find	
better	 ways	 of	 constructing	 this	 hierarchy	 to	 accommodate	 things	 like	 arbitrary	 declaration	
specifiers,	access	specifiers,	and	other	attributes.	

Properties	are	accessed	via	member	 functions	of	 the	classes	above.	These	member	 functions	
require	the	use	of	intrinsics	to	access	their	requested	data.	For	example,	the	function	template	
might	provide	access	to	its	name	like	this:	

template<reflection_t X>
struct function {
 static constexpr const char* name() const {
 return __reflect_name(X);
 }
};

The	__reflect_name	intrinsic	takes	the	opaque	entity	descriptor	to	the	compiler	as	a	constant	
expression.	 Internally,	 the	compiler	 converts	 this	back	 to	a	node	pointer,	 generates	a	human	
readable	name	for	the	reflected	variable,	and	the	rewrites	the	entire	expression	as	a	string	literal	
containing	the	characters	of	the	variable’s	names.	The	effect	is	that	the	expression	$main.name()	
results	in	the	following	definition	for	main:	

static constexpr const char* name() const {
 return “main”;
}

Here	is	a	list	of	intrinsics	that	can	be	used	to	access	scalar	or	string	properties.	

The	 entirety	 of	 this	 design	 is	 driven	 by	 an	 implementation	 specific	 interface	 exposed	 by	 the	
compiler	that	allows	library	writer	to	query	internal	properties	of	the	AST.	This	interface	is	can	
be	viewed	as	an	extension	of	a	compiler’s	type	trait	intrinsics,	which	give	library	writers	a	limited	
view	into	the	compiler’s	understanding	of	the	type	system.	This	interface	makes	that	view	much	
larger	and	more	fine-grained.	A	partial	listing	of	that	interface	is	given	in	the	table	below.	

Intrinsic	name	 Return	type	 Description	

__reflect_name(n) const char* Returns	the	declared	name	of	a	
declaration.		

__reflect_qual_name(n) const char * Returns	the	fully	qualified	name	of	a	
declaration.		

__reflect_type(n) Type Depends	on	the	named	entity	

__reflect_scope(n) ScopedEntity Depends	on	the	named	entity	

__reflect_member(n) Tuple A	tuple	containing	the	objects/types	
of	members	of	a	scope	

__reflect_traits(n) unspecified
A	bitfield	object	that	encodes	a	series	
of	flags	and	values	to	be	interpreted	
by	property	accessor	functions.	

Member	sequences	

Properties	that	return	Tuples	(e.g.,	members())	are	heterogeneous	containers	of	declarations.	
This	 is	 not	 a	 std:tuple	 (the	 number	 of	 members	 could	 be	 very	 large).	 The	 current	
implementation	 uses	 a	 generated	 tuple,	 built	 on	 the	 back	 of	 two	 intrinsics:	
__reflect_num_members,	 and	__reflect_ith_member.	 The	 first	 tells	 the	 program	 how	
many	elements	the	tuple	contains,	and	the	second	yields	the	ith	element.	Note	that	this	design	
does	not	actually	produce	an	object	containing	all	elements.	

These	are	combined	to	define	a	data	type	that	works	like	a	tuple.	Here	is	a	simplified	version	of	
that	class;	it	is	parameterized	by	a	data	type	R	(for	reflections)	that	provides	two	operations:	size	
and	get.	

template<typename R>
struct generated_tuple { };

template<typename R>
struct std::tuple_size<generated_tuple<R>>
 : std::integral_constant<size_t, R::size()>
{ };

template<int I, typename R>
auto get(generated_tuple<R>) {
 return R::template get<I>();
}

To	 use	 the	 generated	 tuple,	 an	 element	must	 define	 the	 reflection	 data	 type	 to	 access	 the	
required	elements.	Here	is	a	fragment	of	the	ns	template.	

template<reflection X>
struct ns {
 // Provides operations for a generated tuple
 struct member_reflection {
 static size_t size() { return __reflect_num_members(X); }
 template<int I>
 static auto get() { return __reflect_ith_member(X, I); }
 };
 using member_list = generated_tuple<member_reflection>;

 // The member accessor
 static member_list members() { return {}; }
};

Note	that	we	need	to	define	these	two	intrinsics	for	each	kind	of	sequence	returned.	There	are	
currently	four:	members	of	scope,	bases	of	a	class,	parameters	of	a	function,	and	enumerators	
of	an	enumeration.		

Of	course,	there	are	also	interesting	subsets	of	those	sequences.	For	example,	when	querying	a	
class,	we	might	only	be	interested	in	non-static	member	variables	or	constructors.	Or	we	might	

be	interested	in	the	virtual	bases	of	a	class.	One	option	is	to	define	an	intrinsic	for	each	sequence	
of	interest,	but	that	wouldn’t	scale.	The	other	option	is	to	apply	a	compile-time	filter	to	those	
sequences.		

Filtered	sequences	
Instead	 of	 defining	 an	 even	 more	 expansive	 intrinsic	 interface,	 we	 can	 apply	 a	 little	
metaprogramming	and	build	compile-time	filters	on	our	generated	tuples.	The	“filter”	is	simply	
a	 type	 trait	 that	 determines	 the	 inclusion	 of	 an	 element	 in	 the	 result	 set.	 The	 filtered	 tuple	
interface	is:	

template<typename R, template<typename> typename P>
struct filtered_tuple { };

template<typename R, template<typename> typename P>
struct std::tuple_size<filtered_tuple<R, P>
 : std::integral_constant<size_t, tuple_count_if_v<R, P>> { };
template<int I, typename R, template<typename> typename P>
auto get(filtered_tuple<R, P> t) {
 return tuple_get_if<I, P>(t);
}

The	R	 parameter	 provides	 access	 to	 the	 underlying	 elements	 of	 a	 generated	 tuple,	 and	 the	
predicate	is	passed	as	a	template	template	parameter.	The	tuple_size	specialization	counts	
the	number	of	elements	X	for	which	P<X>::value	is	true,	and	tuple_get_if	returns	the	ith	
element	for	which	P<X>::value	is	true.		

The	implementation	of	this	facility	would	be	much	easier	if	concepts	were	available.	Fortunately,	
it’s	use	is	not	particularly	difficult.	Here	is	how	to	implement	member_variables()	for	a	class.	

template<reflection_t X>
struct class_type {
 // define member_reflection as above
 using memvar_list
 = filtered_tuple<member_reflection, is_member_variable>;

 static memver_list member_variables() { return {}; }
};

Discussion	
This	section	discusses	the	evolution	of	this	design,	 including	comparisons	with	prior	work	and	
tradeoffs	of	different	approaches.	

Related	work	
The	most	 comprehensive	 work	 done	 on	 static	 reflection	 to	 date	 is	 by	Matúš	 Chochlík,	 Axel	
Naumann,	and	David	Sankel.	The	most	documents	capturing	the	state	of	this	work	are:	

• P0385R1	–	“Design	document	for	static	reflection”	by	Chochlík,	Naumann,	and	Sankel.	
• P0194R2	–	“Proposed	wording	for	static	reflection”	by	Chochlík,	Naumann,	and	Sankel.	

• P0255R0	–	“C++	Static	Reflection	via	template	pack	expansion”	by	Cleiton	Santoia	Silva	
and	Daniel	Auresco	

There	is	also	an	initial	implementation	of	the	work	by	Chochlík	and	Axel	Naumann	in	Clang,	which	
can	be	found	here:		

https://github.com/matus-chochlik/clang/tree/mirror-reflection	

This	approach	Chochlík,	Naumann,	and	Sankel	uses	a	reflexpr	operator	to	associate	a	unique	
implementation-defined	class	with	each	reflected	type	(fundamental,	compound,	user-defined),	
namespace,	and	specifier	(public,	virtual,	etc.).	A	set	of	queries,	in	the	form	of	type	traits,	is	used	
to	access	the	name,	members,	and	other	properties	of	the	reflected	class.	Certain	queries	(i.e.,	
get_pointer<>)	can	be	used	to	access	the	reflected	objects	or	class	members.	Reflection	of	
templates,	expressions,	and	names	with	no	linkage	is	not	currently	supported.	

The	 proposal	 described	 in	 this	 document	 is	 largely	 equivalent	 to	 the	 design	 in	 P0385R1	 and	
P0194R2	except	in	one	significant	way:	the	reflexpr	operator	yields	types	and	our	$	operator	
yields	 objects.	 Many	 other	 aspects	 of	 both	 proposals	 are	 directly	 analogous,	 including	 the	
compiler/library	interaction	for	creating	new	reflection	types	or	objects.	

In	fact,	the	proposals	are	so	closely	related	that,	if	the	library	aspects	were	unified,	then	we	have	
the	following	equivalencies	for	the	reflection	operator:	

reflexpr(x){} /* is equivalent to */ $x
decltype($x) /* is equivalent to */ reflexpr(x)

A	second	major	difference	in	the	design	is	how	properties	are	accessed.	P0385R1	relies	on	type	
traits;	 we	 use	member	 functions.	 The	 requirement	 for	 type	 traits	 follows	 from	 the	 fact	 that	
reflexpr	yields	a	type,	although	properties	could	also	be	accessed	via	nested	members.	In	this	
proposal,	methods	and	members	of	reflection	classes	are	all	static.	Although	not	directly	usable	
with	type	traits	(because	$	yields	an	object),	that	 information	is	nonetheless	accessible	at	the	
type	level.	

One	notable	difference	is	that	our	implementation	relies	on	intrinsics	to	generate	property	values	
when	requested.	The	implementation	described	in	P0385R1	appears	to	populate	reflection	types	
at	the	time	they	are	defined.	There	are	pros	and	cons	to	both	approaches;	we	suspect	that	the	
implementation	techniques	are	interchangeable.	

It	is	also	worth	noting	P0255R0	by	Cleiton	Santoia	Silva	and	Daniel	Auresco.	This	proposal	is	less	
fully	developed	than	that	of	Matúš	and	Naumannn,	but	has	some	interesting	ideas.	

This	approach	uses	a	set	of	operators,	typedef<T, P>,	typename<T, P>,	and	typeid<T,
P>,	to	denote	a	parameter	pack	of	“things”	associated	with	T	and	filtered	by	some	predicate	P.	I	
say	“things”	because	I	believe	the	queries	can	yield	either	type	or	non-type	argument	packs.	For	
example:	

typedef<string, is_member_object_pointer>...

Selects	 all	members	 from	 string	 and	expands	 that	 as	 a	 pack	of	member	pointer	 objects.	 The	
different	operators	select	different	kinds	of	properties.	

Under	this	proposal,	it	appears	that	the	type	trait	used	to	select	elements	of	the	resulting	pack	
would	 actually	 determine	 the	 type	 of	 those	 elements.	 Here,	 for	 example,	 the	 elements	 are	
member	pointers.	 It’s	not	entirely	clear	how	 I	might	 select	 the	names	of	 those	members,	 for	
example.	I’m	not	sure	the	proposal	scales.	

However,	 the	 idea	of	returning	an	unexpanded	pack	of	objects	 is	not	 fundamentally	different	
than	how	this	proposal	returns	and	generates	tuples.	However,	the	uniform	language	support	for	
tuples,	packs,	and	classes	is	well	beyond	the	scope	of	this	proposal,	but	nonetheless	intriguing.	

Missing	features	
This	proposal	is	lacking	a	reification	operator;	that	is	an	operator	that	takes	a	reflection	and	yields	
an	object,	 function,	 type,	or	namespace.	 Initial	 circulations	of	 the	proposal	 included	a	postfix	
operator	that	did	just	that.	For	example:	

int x = 0;
$x.type()$ y = y; // the type of y is int.

Here,	 the	 postfix	 reification	 operator	 is	 applied	 to	 the	 reflection	 $x.type()	 (this	 yields	 a	
meta::	object)	to	produce	the	type	of	y.	However,	there	were	some	concerns	about	parsing	this	
style	of	operator,	and	so	we	have	temporarily	put	its	design	aside.		

Specification	
2.	Lexical	conventions	
In	Section	2.3,	add	$	to	the	list	of	characters	in	the	basic	character	set.	

In	Section	2.12	add	$	to	the	preprocessing-op-or-punc	production.	

5.	Expressions	
In	5.3,	modify	the	unary-expression	grammar	as	follows,	and	add	a	new	production	reflection-
argument.	

unary-expression:	
	 postfix-expression	
	 ++	cast-expression	
	 --	cast-expression	
	 $	reflection-argument	
	 unary-operator	cast-expression	
	 …		
	
reflection-argument:	
	 id-expression	
	 type-id	
	 namespace-name	

Add	a	new	section	5.3.8,	Reflection	with	the	following	text	

The	$	operator	returns	an	prvalue	class	object	of	unspecified	type	called	a	reflection.	The	
type	of	the	reflection	depends	on	the	entity	denoted	by	the	operand	and	satisfies	one	of	
the	concepts	in	[lib.meta.reflect]	as	specified	table	[ref].	

Table	1	-	Reflections	and	the	concepts	they	satisfy.	

Reflected	entity	 Satisfied	concepts	

Function	 Function	

TODO:	Finish	this	table.	 	

	

	

20.15.	Reflection	concepts	[meta.reflect]	
Add	this	section	to	clause	20.	It	contains	the	definitions	of	the	concepts	describing	reflections.	

TODO:	Define	these	concepts.	

