
p0408r3 - Efficient Access to basic_stringbuf’s Buffer

Peter Sommerlad

2017-11-16

Document Number: p0408r3
Date: 2017-11-16
Project: Programming Language C++
Audience: LWG
Target: C++20

1 Motivation

Streams have been the oldest part of the C++ standard library and their specification doesn’t
take into account many things introduced since C++11. One of the oversights is that there is no
non-copying access to the internal buffer of a basic_stringbuf which makes at least the obtaining
of the output results from an ostringstream inefficient, because a copy is always made. I personally
speculate that this was also the reason why basic_strbuf took so long to get deprecated with its
char * access.

With move semantics and basic_string_view there is no longer a reason to keep this pessimissation
alive on basic_stringbuf.

I also believe we should remove basic_strbuf from the standard’s appendix [depr.str.strstreams].

2 Introduction

This paper proposes to adjust the API of basic_stringbuf and the corresponding stream class
templates to allow accessing the underlying string more efficiently.

C++17 and library TS have basic_string_view allowing an efficient read-only access to a contiguous
sequence of characters which I believe basic_stringbuf has to guarantee about its internal buffer,
even if it is not implemented using basic_string obtaining a basic_string_view on the internal
buffer should work sidestepping the copy overhead of calling str().

On the other hand, there is no means to construct a basic_string and move from it into a
basic_stringbuf via a constructor or a move-enabled overload of str(basic_string &&).

1



2 p0408r3 2017-11-16

2.1 History
2.1.1 Changes from r2
Discussed in Albuquerque, where LEWG was in favor to forward it to LWG for IS with the following
change.

— reestablish rvalue-ref qualified str() instead of the previously suggested pilfer().

— address LWG only in document header.

2.1.2 Changes from r1
Discussed in LEWG Issaquah. Answering some questions and raising more. Reflected in this paper.

— reflected new section numbers from the std. now relative to the current working draft.

— implementation is now working with gcc 7. (not relevant for this paper)

2.1.3 Changes from r0

— Added more context to synopsis sections to see all overloads (Thanks Alisdair).

— rename str_view() to just view(). There was discussion on including an explicit conversion
operator as well, but I didn’t add it yet (my implementation has it).

— renamed r-value-ref qualified str() to pilfer() and removed the reference qualification from
it and remaining str() member.

— Added allocator parameter for the basic_string parameter/result to member functions (see
p0407 for allocator support for stringstreams in general)

3 Acknowledgements

— Daniel Krügler encouraged me to pursue this track.

— Alisdair Meredith for telling me to include context in the synopsis showing all overloads. That
is the only change in this version, no semantic changes!

— Jonathan Wakely to show me the #undef _GLIBCXX_EXTERN_TEMPLATE

4 Impact on the Standard

This is an extension to the API of basic_stringbuf, basic_stringstream, basic_istringstream,
and basic_ostringstream class templates.

This paper addresses both Library Fundamentals TS 3 and C++Next (2020?). When added to the



p0408r3 2017-11-16 3

standard draft with p0448 (spanstream), section [depr.str.strstreams] should be removed.

5 Design Decisions

After experimentation I decided that substituting the (basic_string<charT,traits,Allocator
const &) constructors in favor of passing a basic_string_view would lead to ambiguities with the
new move-from-string constructors.

5.1 Open Issues discussed by LEWG in Albuquerque

— Should pilfer() be rvalue-ref qualified to denote the "destruction" of the underlying buffer?
LEWG in Issaquah didn’t think so, but I’d like to ask again. LEWG small group in Albuquerque
in favor of rvalue-ref qualification. Re-establish str()&&, drop pilfer

5.2 Open Issues discussed by LEWG in Issaquah and Albuquerque

— Is the name of the str_view() member function ok? No. Renamed to view()

— Should the str()&& overload be provided for move-out? No. give it another name (pilfer)
and remove rvalue-ref-qualification (Issaquah). Re-establish str()&&, drop pilfer

— Should str()&& empty the character sequence or leave it in an unspecified but valid state?
Empty it, and specify.

— Provide guidance on validity lifetime of of the obtained string_view object.

6 Technical Specifications

The following is relative to n4604.

Remove section on char* streams [depr.str.strstreams] and all its subsections from appendix D.

6.1 30.8.2 Adjust synopsis of basic_stringbuf [stringbuf]
Add a new constructor overload.

Note that p0407 provides allocator support for basic_stringbuf, depending on acceptance sequence
of the papers, some overloads need to be further added/adjusted and the wording also adjusted. At
the time of p0408r3 that was forwarded to LWG, p0407 was not yet reviewed by LEWG.

// ??, constructors:
explicit basic_stringbuf(

ios_base::openmode which = ios_base::in | ios_base::out);
template<class SAlloc = Allocator>
explicit basic_stringbuf(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

explicit basic_stringbuf(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);



4 p0408r3 2017-11-16

basic_stringbuf(const basic_stringbuf& rhs) = delete;
basic_stringbuf(basic_stringbuf&& rhs);

Change the getting str() overload to take an Allocator for the returned string and add a reference
qualification. Add an rvalue-ref overload of str(). Change the str() overload copying into the string
buffer to take an allocator template parameter that could differ from the buffer’s own Allocator.
Add a str() overload that moves from its string rvalue-reference argument into the internal buffer.
Add the view() member function obtaining a string_view to the underlying internal buffer.

// ??, get and set:
template<class SAlloc = Allocator>
basic_string<charT,traits,SAllocator> str(const SAlloc& sa = SAlloc()) const &;
template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const;

6.1.1 30.8.2.1 basic_stringbuf constructors [stringbuf.cons]
Modify the following constructor specification:

template<class SAlloc = Allocator>
explicit basic_stringbuf(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringbuf, initializing the base class with
basic_streambuf() (??), and initializing mode with which. Then calls str(s).

Add the following constructor specification:

explicit basic_stringbuf(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

2 Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_-
streambuf() (30.6.3.1), and initializing mode with which. Then calls str(std::move(s)).

Note to editors: if p0407 is accepted the changes there for allocators apply here as well. However,
different allocators for s and the basic_stringbuf will result in a copy instead of a move.

6.1.2 30.8.2.3 Member functions [stringbuf.members]
Add an allocator parameter for the copied from string to allow having a different allocator than the
underlying stream and a ref-qualifier to avoid ambiguities with the rvalue-ref qualified overload.

template<class SAlloc = Allocator>
basic_string<charT, traits,SAllocator> str(const SAlloc& sa = SAlloc()) const &;

Change p1 to use plural for "str(basic_string) member functions" and refer to the allocator:
1 Returns: A basic_string object with allocator sa whose content is equal to the basic_-

stringbuf underlying character sequence. If the basic_stringbuf was created only in input
mode, the resultant basic_string contains the character sequence in the range [eback(),



p0408r3 2017-11-16 5

egptr()). If the basic_stringbuf was created with which & ios_base::out being true then
the resultant basic_string contains the character sequence in the range [pbase(), high_-
mark), where high_mark represents the position one past the highest initialized character
in the buffer. Characters can be initialized by writing to the stream, by constructing the
basic_stringbuf with a basic_string, or by calling one of the str(basic_string) member
functions. In the case of calling one of the str(basic_string)member functions, all characters
initialized prior to the call are now considered uninitialized (except for those characters re-
initialized by the new basic_string). Otherwise the basic_stringbuf has been created in
neither input nor output mode and a zero length basic_string is returned.

Add the following specifications and adjust the wording of str() const according to the wording
given for view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

2 Effects: Moves the content of s into the basic_stringbuf underlying character sequence and
initializes the input and output sequences according to mode.

3 Postconditions: Let size denote the original value of s.size() before the move. If mode
& ios_base::out is true, pbase() points to the first underlying character and epptr() >=
pbase() + size holds; in addition, if mode & ios_base::ate is true, pptr() == pbase() +
size holds, otherwise pptr() == pbase() is true. If mode & ios_base::in is true, eback()
points to the first underlying character, and both gptr() == eback() and egptr() ==
eback() + size hold.

basic_string<charT, traits, Allocator> str() &&;

4 Returns: A basic_string object moved from the basic_stringbuf underlying character
sequence. If the basic_stringbuf was created only in input mode, basic_string(eback(),
egptr()-eback()). If the basic_stringbuf was created with which & ios_base::out being
true then basic_string(pbase(), high_mark-pbase()), where high_mark represents the
position one past the highest initialized character in the buffer. Characters can be initialized
by writing to the stream, by constructing the basic_stringbuf with a basic_string, or
by calling one of the str(basic_string) member functions. In the case of calling one of
the str(basic_string) member functions, all characters initialized prior to the call are now
considered uninitialized (except for those characters re-initialized by the new basic_string).
Otherwise the basic_stringbuf has been created in neither input nor output mode and an
empty basic_string is returned.

5 Postconditions: The underlying character sequence is empty.
6 [Note: After calling this member function the basic_stringbuf object remains usable. —end

note ]

basic_string_view<charT, traits> view() const;

7 Returns: A basic_string_view object referring to the basic_stringbuf underlying char-
acter sequence. If the basic_stringbuf was created only in input mode, basic_string_-
view(eback(), egptr()-eback()). If the basic_stringbuf was created with which & ios_-
base::out being true then basic_string_view(pbase(), high_mark-pbase()), where high_-



6 p0408r3 2017-11-16

mark represents the position one past the highest initialized character in the buffer. Characters
can be initialized by writing to the stream, by constructing the basic_stringbuf with a
basic_string, or by calling one of the str(basic_string) member functions. In the case
of calling one of the str(basic_string) member functions, all characters initialized prior
to the call are now considered uninitialized (except for those characters re-initialized by the
new basic_string). Otherwise the basic_stringbuf has been created in neither input nor
output mode and a basic_string_view referring to an empty range is returned.

8 [Note: Using the returned basic_string_view object after destruction or any modification
of the character sequence underlying *this, such as output on the holding stream, will cause
undefined behavior, because the internal string referred by the return value might have changed
or re-allocated. —end note ]

6.2 30.8.3 Adjust synopsis of basic_istringstream [istringstream]
Add a new constructor overload and change the one taking the string by copy to allow a different
allocator for the copied from string:

// ??, constructors:
explicit basic_istringstream(

ios_base::openmode which = ios_base::in);
template<class SAlloc = Allocator>
explicit basic_istringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::in);

explicit basic_istringstream(
basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::in);

basic_istringstream(const basic_istringstream& rhs) = delete;
basic_istringstream(basic_istringstream&& rhs);

Change the getting str() overload to take an Allocator for the returned string and add a reference
qualification. Add an rvalue-ref overload of str(). Change the str(s) overload to take an allocator
template parameter that could differ from the buffer’s own Allocator. Add a str(s) overload that
moves from its string and a view() member function:

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

template<class SAlloc = Allocator>
basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa=SAlloc()) const &;
template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);
basic_string<charT,traits,Allocator> str() &&;
basic_string_view<charT, traits> view() const;

6.2.1 30.8.3.1 basic_istringstream constructors [istringstream.cons]
Change the constructor specification to allow a string copy with a different allocator.



p0408r3 2017-11-16 7

template<class SAlloc = Allocator>
explicit basic_istringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing
the base class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(str, which | ios_base::in)) (??).

Add the following constructor specification:

explicit basic_istringstream(
const basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing
the base class with basic_istream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(std::move(str), which | ios_base::in)) (30.8.2.1).

6.2.2 30.8.3.3 Member functions [istringstream.members]
Add the allocator parameter to the following str() overloads:

template<class SAlloc = Allocator>
basic_string<charT,traits,SAllocator> str(const SAlloc& sa = SAlloc()) const &;

1 Returns: rdbuf()->str(sa).

template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

4 Returns: std::move(*rdbuf()).str().
5 [Note: Calling this member function leaves the stream object in a usable state with an emptied

underlying basic_stringbuf. —end note ]

basic_string_view<charT, traits> view() const;

6 Returns: rdbuf()->view().

6.3 30.8.4 Adjust synopsis of basic_ostringstream [ostringstream]
Add a new constructor overload and change the one taking the string by copy to allow a different
allocator for the copied from string:

// ??, constructors:
explicit basic_ostringstream(



8 p0408r3 2017-11-16

ios_base::openmode which = ios_base::out);
template<class SAlloc = Allocator>
explicit basic_ostringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::out);

explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_ostringstream& rhs) = delete;
basic_ostringstream(basic_ostringstream&& rhs);

Change the getting str() overload to take an Allocator for the returned string and add a reference
qualification. Add an rvalue-ref overload of str(). Change the str(s) overload to take an allocator
template parameter that could differ from the buffer’s own Allocator. Add a str(s) overload that
moves from its string and a view() member function:

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

template<class SAlloc = Allocator>
basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa = SAlloc()) const &;
template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const;

6.3.1 30.8.4.1 basic_ostringstream constructors [ostringstream.cons]
Change the constructor specification to allow a string copy with a different allocator.

template<class SAlloc = Allocator>
explicit basic_ostringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializing
the base class with basic_ostream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(str, which | ios_base::out)) (??).

Add the following constructor specification:

explicit basic_ostringstream(
const basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializing
the base class with basic_ostream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(std::move(str), which | ios_base::out)) (30.8.2.1).



p0408r3 2017-11-16 9

6.3.2 30.8.4.3 Member functions [ostringstream.members]
Add the allocator parameter to the following str() overloads:

template<class SAlloc = Allocator>
basic_string<charT,traits,SAllocator> str(const SAlloc& sa = SAlloc()) const &;

1 Returns: rdbuf()->str(sa).

template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

4 Returns: std::move(*rdbuf()).str().
5 [Note: Calling this member function leaves the stream object in a usable state with an emptied

underlying basic_stringbuf. —end note ]

basic_string_view<charT, traits> view() const;

6 Returns: rdbuf()->view().

6.4 30.8.5 Adjust synopsis of basic_stringstream [stringstream]
Add a new constructor overload and change the one taking the string by copy to allow a different
allocator for the copied from string:

// ??, constructors:
explicit basic_stringstream(

ios_base::openmode which = ios_base::out | ios_base::in);
template<class SAlloc=Allocator>
explicit basic_stringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::out | ios_base::in);

explicit basic_stringstream(
basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringstream(const basic_stringstream& rhs) = delete;
basic_stringstream(basic_stringstream&& rhs);

Change the getting str() overload to take an Allocator for the returned string and add a reference
qualification. Add an rvalue-ref overload of str(). Change the str(s) overload to take an allocator
template parameter that could differ from the buffer’s own Allocator. Add a str(s) overload that
moves from its string and a view() member function:

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;



10 p0408r3 2017-11-16

template<class SAlloc=Allocator>
basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa = SAlloc()) const &;
template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const;

6.4.1 30.8.4.1 basic_stringstream constructors [stringstream.cons]
Change the constructor specification to allow a string copy with a different allocator.

template<class SAlloc = Allocator>
explicit basic_stringstream(

const basic_string<charT, traits, SAllocator>& str,
ios_base::openmode which = ios_base::out | ios_base::in);

1 Effects: Constructs an object of class basic_stringstream<charT, traits>, initializing
the base class with basic_iostream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(str, which).

Add the following constructor specification:

explicit basic_stringstream(
const basic_string<charT, traits, Allocator>&& str,
ios_base::openmode which = ios_base::in | ios_base::out);

2 Effects: Constructs an object of class basic_stringstream<charT, traits>, initializing
the base class with basic_stream(&sb) and initializing sb with basic_stringbuf<charT,
traits, Allocator>(std::move(str), which)) (30.8.2.1).

6.4.2 30.8.4.3 Member functions [stringstream.members]
Add the allocator parameter to the following str() overloads:

template<class SAlloc = Allocator>
basic_string<charT,traits,SAllocator> str(const SAlloc& sa = SAlloc()) const &;

1 Returns: rdbuf()->str(sa).

template<class SAlloc = Allocator>
void str(const basic_string<charT, traits, SAllocator>& s);

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> str() &&;

4 Returns: std::move(*rdbuf()).str().



p0408r3 2017-11-16 11

5 [Note: Calling this member function leaves the stream object in a usable state with an emptied
underlying basic_stringbuf. —end note ]

basic_string_view<charT, traits> view() const;

6 Returns: rdbuf()->view().

7 Appendix: Example Implementations

The given specification has been implemented within a recent version of the sstream header of gcc6.
Modified version of the headers and some tests are available at

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/Test_basic_string-
buf_efficient/src.


	1 Motivation
	2 Introduction
	2.1 History

	3 Acknowledgements
	4 Impact on the Standard
	5 Design Decisions
	5.1 Open Issues discussed by LEWG in Albuquerque
	5.2 Open Issues discussed by LEWG in Issaquah and Albuquerque

	6 Technical Specifications
	6.1 30.8.2 Adjust synopsis of basic_stringbuf [stringbuf]
	6.2 30.8.3 Adjust synopsis of basic_istringstream [istringstream]
	6.3 30.8.4 Adjust synopsis of basic_ostringstream [ostringstream]
	6.4 30.8.5 Adjust synopsis of basic_stringstream [stringstream]

	7 Appendix: Example Implementations

