
p0408r1 - Efficient Access to basic stringbuf’s Buffer

Peter Sommerlad

2017-02-03

Document Number: p0408r1

Date: 2017-02-03

Project: Programming Language C++

Audience: LWG/LEWG

Target: C++20

1 Motivation

Streams have been the oldest part of the C++ standard library and their specification
doesn’t take into account many things introduced since C++11. One of the oversights is
that there is no non-copying access to the internal buffer of a basic_stringbuf which
makes at least the obtaining of the output results from an ostringstream inefficient,
because a copy is always made. I personally speculate that this was also the reason why
basic_strbuf took so long to get deprecated with its char * access.

With move semantics and basic_string_view there is no longer a reason to keep
this pessimissation alive on basic_stringbuf.

I also believe we should remove basic strbuf from the standard’s appendix [depr.str.strstreams].

2 Introduction

This paper proposes to adjust the API of basic_stringbuf and the corresponding
stream class templates to allow accessing the underlying string more efficiently.

C++17 and library TS have basic_string_view allowing an efficient read-only ac-
cess to a contiguous sequence of characters which I believe basic_stringbuf has to
guarantee about its internal buffer, even if it is not implemented using basic_string

obtaining a basic_string_view on the internal buffer should work sidestepping the
copy overhead of calling str().

On the other hand, there is no means to construct a basic_string and move from it
into a basic_stringbuf via a constructor or a move-enabled overload of str(basic_-
string &&).

1

2 p0408r1 2017-02-03

2.1 History

Discussed in LEWG Issaquah. Answering some questions and raising more. Reflected
in this paper.

2.1.1 Changes from r0

• Added more context to synopsis sections to see all overloads (Thanks Alisdair).

• rename str_view() to just view(). There was discussion on including an explicit
conversion operator as well, but I didn’t add it yet (my implementation has it).

• renamed r-value-ref qualified str() to pilfer() and removed the reference qual-
ification from it and remaining str() member.

• Added allocator parameter for the basic_string parameter/result to member
functions (see p0407 for allocator support for stringstreams in general)

3 Acknowledgements

• Daniel Krügler encouraged me to pursue this track.

• Alisdair Meredith for telling me to include context in the synopsis showing all
overloads. That is the only change in this version, no semantic changes!

4 Impact on the Standard

This is an extension to the API of basic_stringbuf, basic_stringstream, basic_-
istringstream, and basic_ostringstream class templates.

This paper addresses both Library Fundamentals TS 3 and C++Next (2020?). When
added to the standard draft section [depr.str.strstreams] should be removed from it.

5 Design Decisions

After experimentation I decided that substituting the (basic_string<charT,traits,Allocator
const &) constructors in favor of passing a basic_string_view would lead to ambigu-
ities with the new move-from-string constructors.

p0408r1 2017-02-03 3

5.1 Open Issues discussed by LEWG in Issquah

• Is the name of the str_view() member function ok? No. Renamed to view()

• Should the str()&& overload be provided for move-out? No. give it another name
(pilfer) and remove rvalue-ref-qualification.

• Should str()&& empty the character sequence or leave it in an unspecified but
valid state? Empty it, and specify.

• Provide guidance on validity lifetime of of the obtained string_view object.

6 Technical Specifications

The following is relative to n4604.

Remove section on char* streams [depr.str.strstreams] and all its subsections from
appendix D.

6.1 27.8.2 Adjust synopsis of basic stringbuf [stringbuf]

Add a new constructor overload:

// ??, constructors:
explicit basic_stringbuf(

ios_base::openmode which = ios_base::in | ios_base::out);

template<class SAlloc=Allocator>

explicit basic_stringbuf(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::in | ios_base::out);

explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,

ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringbuf(const basic_stringbuf& rhs) = delete;

basic_stringbuf(basic_stringbuf&& rhs);

Change the getting str() overload to take an Allocator for the returned string.
Change the str() overload copying into the string buffer to take an allocator template
parameter that could differ from the buffer’s own Allocator. Add a str() overload
that moves from its string rvalue-reference argument into the internal buffer. Add the
pilfer() member function obtaining a string from the internal buffer by moving from it.
Add the view() member function obtaining a string_view to the underlying internal
buffer.

4 p0408r1 2017-02-03

// ??, get and set:
template<class SAlloc=Allocator>

basic_string<charT,traits,SAllocator> str(const SAlloc& sa=SAlloc()) const;

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> pilfer();

basic_string_view<charT, traits> view() const;

6.1.1 27.8.2.1 basic stringbuf constructors [stringbuf.cons]

Modify the following constructor specification:

template<class SAlloc=Allocator>

explicit basic_stringbuf(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringbuf, initializing the base
class with basic_streambuf() (??), and initializing mode with which. Then calls
str(s).

Add the following constructor specification:

explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,

ios_base::openmode which = ios_base::in | ios_base::out);

2 Effects: Constructs an object of class basic_stringbuf, initializing the base class
with basic_streambuf() (27.6.3.1), and initializing mode with which. Then calls
str(std::move(s)).

Note to editors: if p0407 is accepted the changes there for allocators apply here as
well. However, different allocators for s and the basic_stringbuf will result in a copy
instead of a move.

6.1.2 27.8.2.3 Member functions [stringbuf.members]

Add an allocator parameter for the copied from string to allow having a different allocator
than the underlying stream.

template<class SAlloc=Allocator>

basic_string<charT,traits,SAllocator> str(const SAlloc& sa=SAlloc()) const;

Change p1 to use plural for ”str(basic_string) member functions” and refer to
the allocator:

p0408r1 2017-02-03 5

1 Returns: A basic_string object with allocator sa whose content is equal to the
basic_stringbuf underlying character sequence. If the basic_stringbuf was
created only in input mode, the resultant basic_string contains the character
sequence in the range [eback(), egptr()). If the basic_stringbuf was created
with which & ios_base::out being true then the resultant basic_string con-
tains the character sequence in the range [pbase(), high_mark), where high_-

mark represents the position one past the highest initialized character in the buffer.
Characters can be initialized by writing to the stream, by constructing the basic_-
stringbuf with a basic_string, or by calling one of the str(basic_string)

member functions. In the case of calling one of the str(basic_string) member
functions, all characters initialized prior to the call are now considered uninitialized
(except for those characters re-initialized by the new basic_string). Otherwise
the basic_stringbuf has been created in neither input nor output mode and a
zero length basic_string is returned.

Add the following specifications and adjust the wording of str() const according
to the wording given for view() const member function.:

void str(basic_string<charT, traits, Allocator>&& s);

2 Effects: Moves the content of s into the basic_stringbuf underlying character
sequence and initializes the input and output sequences according to mode.

3 Postconditions: Let size denote the original value of s.size() before the move.
If mode & ios_base::out is true, pbase() points to the first underlying character
and epptr() >= pbase() + size holds; in addition, if mode & ios_base::ate

is true, pptr() == pbase() + size holds, otherwise pptr() == pbase() is true.
If mode & ios_base::in is true, eback() points to the first underlying character,
and both gptr() == eback() and egptr() == eback() + size hold.

basic_string<charT, traits, Allocator> pilfer();

4 Returns: A basic_string object moved from the basic_stringbuf underlying
character sequence. If the basic_stringbuf was created only in input mode,
basic_string(eback(), egptr()-eback()). If the basic_stringbuf was cre-
ated with which & ios_base::out being true then basic_string(pbase(), high_-

mark-pbase()), where high_mark represents the position one past the highest
initialized character in the buffer. Characters can be initialized by writing to the
stream, by constructing the basic_stringbuf with a basic_string, or by calling
one of the str(basic_string) member functions. In the case of calling one of the
str(basic_string) member functions, all characters initialized prior to the call
are now considered uninitialized (except for those characters re-initialized by the
new basic_string). Otherwise the basic_stringbuf has been created in neither
input nor output mode and an empty basic_string is returned.

5 Postcondition: The underlying character sequence is empty.

6 p0408r1 2017-02-03

basic_string_view<charT, traits> view() const;

6 Returns: A basic_string_view object referring to the basic_stringbuf un-
derlying character sequence. If the basic_stringbuf was created only in in-
put mode, basic_string_view(eback(), egptr()-eback()). If the basic_-

stringbuf was created with which & ios_base::out being true then basic_-

string_view(pbase(), high_mark-pbase()), where high_mark represents the
position one past the highest initialized character in the buffer. Characters can be
initialized by writing to the stream, by constructing the basic_stringbuf with a
basic_string, or by calling one of the str(basic_string) member functions. In
the case of calling one of the str(basic_string) member functions, all characters
initialized prior to the call are now considered uninitialized (except for those char-
acters re-initialized by the new basic_string). Otherwise the basic_stringbuf

has been created in neither input nor output mode and a basic_string_view

referring to an empty range is returned.

7 [Note: Using the returned basic_string_view object after destruction or any
modification of the character sequence underlying *this, such as output on the
holding stream, will cause undefined behavior, because the internal string referred
by the return value might have changed or re-allocated. — end note]

6.2 27.8.3 Adjust synopsis of basic istringstream
[istringstream]

Add a new constructor overload and change the one taking the string by copy to allow
a different allocator for the copied from string:

// ??, constructors:
explicit basic_istringstream(

ios_base::openmode which = ios_base::in);

template<class SAlloc=Allocator>

explicit basic_istringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::in);

explicit basic_istringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in);

basic_istringstream(const basic_istringstream& rhs) = delete;

basic_istringstream(basic_istringstream&& rhs);

Change the str() member function to allow different allocator argument for the new
string to be used or the obtained string copy. Add an overload of the str(s) member
function that moves from a string and add pilfer() and view() member function:

p0408r1 2017-02-03 7

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

template<class SAlloc=Allocator>

basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa=SAlloc()) const;

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> pilfer();

basic_string_view<charT, traits> view() const;

6.2.1 27.8.3.1 basic istringstream constructors [istringstream.cons]

Change the constructor specification to allow a string copy with a different allocator.

template<class SAlloc=Allocator>

explicit basic_istringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_istringstream<charT, traits>,
initializing the base class with basic_istream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(str, which | ios_base::in)) (??).

Add the following constructor specification:

explicit basic_istringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of class basic_istringstream<charT, traits>,
initializing the base class with basic_istream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which | ios_base::in))

(27.8.2.1).

6.2.2 27.8.3.3 Member functions [istringstream.members]

Add the allocator parameter to the following str() overloads:

template<class SAlloc=Allocator>

basic_string<charT,traits,SAllocator> str(const SAlloc& sa=SAlloc()) const;

1 Returns: rdbuf()->str(sa).

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

8 p0408r1 2017-02-03

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> pilfer();

4 Returns: rdbuf()->pilfer().

basic_string_view<charT, traits> view() const;

5 Returns: rdbuf()->view().

6.3 27.8.4 Adjust synopsis of basic ostringstream
[ostringstream]

Add a new constructor overload and change the one taking the string by copy to allow
a different allocator for the copied from string:

// ??, constructors:
explicit basic_ostringstream(

ios_base::openmode which = ios_base::out);

template<class SAlloc=Allocator>

explicit basic_ostringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::out);

explicit basic_ostringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_ostringstream& rhs) = delete;

basic_ostringstream(basic_ostringstream&& rhs);

Change the str() member function to allow different allocator argument for the new
string to be used or the obtained string copy. Add an overload of the str(s) member
function that moves from a string and add pilfer() and view() member function:

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

template<class SAlloc=Allocator>

basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa=SAlloc()) const;

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

p0408r1 2017-02-03 9

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> pilfer();

basic_string_view<charT, traits> view() const;

6.3.1 27.8.4.1 basic ostringstream constructors [ostringstream.cons]

Change the constructor specification to allow a string copy with a different allocator.

template<class SAlloc=Allocator>

explicit basic_ostringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ostringstream<charT, traits>,
initializing the base class with basic_ostream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(str, which | ios_base::out)) (??).

Add the following constructor specification:

explicit basic_ostringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of class basic_ostringstream<charT, traits>,
initializing the base class with basic_ostream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which | ios_base::out))

(27.8.2.1).

6.3.2 27.8.4.3 Member functions [ostringstream.members]

Add the allocator parameter to the following str() overloads:

template<class SAlloc=Allocator>

basic_string<charT,traits,SAllocator> str(const SAlloc& sa=SAlloc()) const;

1 Returns: rdbuf()->str(sa).

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

10 p0408r1 2017-02-03

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> pilfer();

4 Returns: rdbuf()->pilfer().

basic_string_view<charT, traits> view() const;

5 Returns: rdbuf()->view().

6.4 27.8.5 Adjust synopsis of basic stringstream
[stringstream]

Add a new constructor overload and change the one taking the string by copy to allow
a different allocator for the copied from string:

// ??, constructors:
explicit basic_stringstream(

ios_base::openmode which = ios_base::out | ios_base::in);

template<class SAlloc=Allocator>

explicit basic_stringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::out | ios_base::in);

explicit basic_stringstream(

basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringstream(const basic_stringstream& rhs) = delete;

basic_stringstream(basic_stringstream&& rhs);

Change the str() member function to allow different allocator argument for the new
string to be used or the obtained string copy. Add an overload of the str(s) member
function that moves from a string and add pilfer() and view() member function:

// ??, members:
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

template<class SAlloc=Allocator>

basic_string<charT,traits,AllocatorSAlloc> str(const SAlloc& sa=SAlloc()) const;

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

void str(basic_string<charT, traits, Allocator>&& s);

basic_string<charT,traits,Allocator> pilfer();

basic_string_view<charT, traits> view() const;

p0408r1 2017-02-03 11

6.4.1 27.8.4.1 basic stringstream constructors [stringstream.cons]

Change the constructor specification to allow a string copy with a different allocator.

template<class SAlloc=Allocator>

explicit basic_stringstream(

const basic_string<charT, traits, SAllocator>& str,

ios_base::openmode which = ios_base::out | ios_base::in);

1 Effects: Constructs an object of class basic_stringstream<charT, traits>,
initializing the base class with basic_iostream(&sb) and initializing sb with
basic_stringbuf<charT, traits, Allocator>(str, which).

Add the following constructor specification:

explicit basic_stringstream(

const basic_string<charT, traits, Allocator>&& str,

ios_base::openmode which = ios_base::in | ios_base::out);

2 Effects: Constructs an object of class basic_stringstream<charT, traits>, ini-
tializing the base class with basic_stream(&sb) and initializing sb with basic_-

stringbuf<charT, traits, Allocator>(std::move(str), which)) (27.8.2.1).

6.4.2 27.8.4.3 Member functions [stringstream.members]

Add the allocator parameter to the following str() overloads:

template<class SAlloc=Allocator>

basic_string<charT,traits,SAllocator> str(const SAlloc& sa=SAlloc()) const;

1 Returns: rdbuf()->str(sa).

template<class SAlloc=Allocator>

void str(const basic_string<charT, traits, SAllocator>& s);

2 Effects: Calls rdbuf()->str(s).

Add the following specifications:

void str(basic_string<charT, traits, Allocator>&& s);

3 Effects: rdbuf()->str(std::move(s)).

basic_string<charT,traits,Allocator> pilfer();

4 Returns: rdbuf()->pilfer().

12 p0408r1 2017-02-03

basic_string_view<charT, traits> view() const;

5 Returns: rdbuf()->view().

7 Appendix: Example Implementations

The given specification has been implemented within a recent version of the sstream
header of gcc6. Modified version of the headers and some tests are available at

https://github.com/PeterSommerlad/SC22WG21 Papers/tree/master/workspace/Test -
basic stringbuf efficient/src.

