
Document number: P0319R1

Date: 2017-06-15

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group / Concurrency Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper proposes the addition of emplace factories for future<T> and emplace functions for promise<T>

as we have proposed for of any and optional in P0032R2.

History
Introduction
Motivation
Proposal
Design rationale
Proposed wording
Implementability
Open points
Acknowledgements
References

Take in account the feedback from Kona:

Clean up the proposal a bit.
Remove the make_ready_future overloads taking a remove_reference_t<T> .
Explain why there were integer template parameters.
Remove noexcept from the make_ready_future() factory functions.

Adding Emplace functions for
promise<T>/future<T> (revision 1)

Table of Contents

History

Revision 1

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#history
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/future/p0319r1.md#references

Added a comparison table for make_ready_future .

In addition:

Any references to std::experimental::optional have been replaced by std::optional .

This paper proposes the addition of emplace factories for future<T> and emplace functions for promise<T>

as we have proposed for of any and optional in P0032R2.

While we have added the future<T> factories make_ready_future and make_exceptional_future

into P0159R0, we don't have emplace factories as we have for shared_ptr and unique_ptr and we have for
any and optional .

The C++ standard should be coherent for features that behave the same way on different types and complete, that
is, don't miss features that could make the user code more efficient.

We propose to:

Add promise<T>::emplace(Args...) member function that emplaces the value instead of setting it.

Add future<T> emplace factory make_ready_future<T>(Args...) .

Some times a promise setter function must construct the promise value type and possibly the exception, that is the
value or the exceptions are not yet built.

Before

 void promiseSetter(std::promise<X>& p, bool cnd) {
 if (cnd)
 p.set_value(X(a, b, c));
 else
 p.set_exception(std::make_exception_ptr(MyException(__FILE_, __LINE__)));
 }

Note that we need to repeat X .

With this proposal we can just emplace either the value or the exception.

Introduction

Motivation

Proposal

Emplace assignment for promises

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

 void producer(std::promise<int>& p, bool cnd) {
 if (cnd) p.set_value(a, b, c);
 p.set_exception(std::make_exception_ptr(MyException(__FILE_, __LINE__)));
 }

Note that not only the code can be more efficient, it is also clearer and more robust as we don't repeat neither X ..

Some future producer functions may know how to build the value at the point of construction and possibly the
exception. However, when the value type is not available it must be constructed explicitly before making a ready
future. The same applies for a possible exception that must be built.

Before

 future<X> futureProducer(bool cnd1, bool cnd2) {
 if (cnd1)
 return make_ready_future(X(a, b, c));
 if (cnd2)
 return make_exceptional_future<X>(MyException(__FILE_, __LINE__));
 else
 return somethingElse();
 }

The same reasoning than the previous section applies here. With this proposal we can just write less code and have
more (and possibly more efficient).

future<int> futureProducer(bool cnd1, bool cnd2) {
 if (cnd1)
 return make_ready_future<X>(a, b, c);
 if (cnd2)
 return make_exceptional_future<X>(MyException(__FILE_, __LINE__));
 else
 return somethingElse();
 }

In order to deduce a reference we need to use std::ref

 int v=0;
 std::future<int&> x = std::experimental::make_ready_future(std::ref(v));

However we want also to be able to force the future value as a template parameter

Emplace factory for futures

Building a future

 int v=0;
 std::future<int&> x = std::experimental::make_ready_future<int&>(v);

We believe this usage would appear in generic contexts and is for this reason desirable.

In this table we use mrf instead ogf make_ready_future for layout concerns.

WITHOUT proposal WITH proposal

int v=0;
short s=0;
future<void> x0 = mrf();

future<int> x1 = mrf(42);
future<int> x2 = mrf(v);
future<int> x3 = mrf(s); // ERROR

future<int&> x4 = mrf(ref(v));

future<int> x5 = mrf<void>(); // ERROR
future<int> x6 = mrf<int>(42);
future<int> x7 = mrf<int>(v);
future<int> x8 = mrf<int>(s); // ERROR

future<int&> x9 = mrf<int&>(ref(v));
future<int&> x10 = mrf<int&>(v); // ERROR
future<int&> x11 = mrf<int&>(42); // ERROR

future<A> x12 = mrf<A>(42, 42); // ERROR

int v=0;
short s=0;
future<void> x0 = mrf();

future<int> x1 = mrf(42);
future<int> x2 = mrf(v);
future<int> x3 = mrf(s);

future<int&> x4 = mrf(ref(v));

future<int> x5 = mrf<void>();
future<int> x6 = mrf<int>(42);
future<int> x7 = mrf<int>(v);
future<int> x8 = mrf<int>(s);

future<int&> x9 = mrf<int&>(ref(v));
future<int&> x10 = mrf<int&>(v);
future<int&> x11 = mrf<int&>(42); // ERROR

future<A> x12 = mrf<A>(42, 42);

Wrapping and type-erasure classes should all provide some kind of emplacement as it is more efficient to emplace
than to construct the wrapped/type-erased type and then copy or assign it.

The current standard and the TS provide already a lot of such emplace operations, either in place constructors,
emplace factories, emplace assignments.

Comparison with make_ready_future factories

Design rationale

Why should we provide some kind of emplacement for
future / promise ?

std::optional provides in place constructors and emplace factory.

This proposal just extends the current future factories to emplace factories.

Should we provide a future in_place constructor? For coherency purposes and in order to be generic, yes, we
should. However we should also provide a constructor from a T which doesn't exists neither. This paper doesn't
proposes this yet.

std::optional provides emplace assignments via optional::emplace() and provides emplace factory.

We believe promise<T> should provide and similar interface. However, a promise accepts to be set only once,
and so the function name should be different for the authors.

As it is the case for make_pair when the parameter is reference_wrapper<T> , the type deduced for the
underlying type is T& .

If we had the following overload

 template <class T>
 future<experimental::meta::decay_unwrap_t<T>> make_ready_future(T&& x); // (1)

the following call will be accepted by (1) resulting in a future<int> , as the type is decayed.

 int v=0;
 std::future<int&> x = std::experimental::make_ready_future<int&>(v);

Adding at least a default int template parameter as follows

 template <int=0, ...int, class T>
 future<experimental::meta::decay_unwrap_t<T>> make_ready_future(T&& x); // (1)
 template <class T, class ...Args>
 future<T> make_ready_future(Args&&... args); // (2)

avoids the selection of overload (1) and selects (2).

Why emplace factories instead of in_place constructors?

Promise emplace assignments

reference_wrapper<T> overload to deduce T&

How to ensure that the parameter T is noy deduced?

These changes are entirely based on library extensions and do not require any language features beyond what is
available in C++ 14.

The wording is relative to P0159R0.

The current wording make use of decay_unwrap_t as proposed in P0318R0, but if this is not accepted the
wording can be changed without too much troubles.

X.Y Header <experimental/future> synopsis

Replace the makereadyfuture declaration in [header.future.synop] by

namespace std {
namespace experimental {
inline namespace concurrency_v2 {

future<void> make_ready_future();
template <class T>
future<void> make_ready_future();

template <class T>
future<decay_unwrap_t<T>> make_ready_future(T&& x);
template <class T, class ...Args>
future<T> make_ready_future(Args&& ...args);
template <class T, class U, class ...Args>
future<T> make_ready_future(initializer_list<U> il, Args&& ...args);

}}
}

X.Y Class template promise

Add [futures.promise] the following in the synopsis

template <class ...Args>
void promise::set_value(Args&& ...args);
template <class U, class... Args>
void promise::set_value(initializer_list<U> il, Args&&... args);

Add the following

Impact on the standard

Proposed wording

Thread library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf

template <class ...Args>
void promise::set_value(Args&& ...args);

Requires: is_constructible<R, Args&&...>

Effects: atomically initializes the stored value as if direct-non-list-initializing an object of type R with the arguments
forward<Args>(args)...) in the shared state and makes that state ready.

Postconditions: this contains a value.

[NDLR] Throws and Error conditions as before

template <class U, class... Args>
void promise::set_value(initializer_list<U> il, Args&&... args);

Requires: is_constructible<R, initializer_list<U>&, Args&&...>

Effects: atomically initializes the stored value as if direct-non-list-initializing an object of type R with the arguments
il, forward<Args>(args)...) in the shared state and makes that state ready.

Postconditions: this contains a value.

[NDLR] Throws and Error conditions as before

Function template makereadyfuture

Replace in [futures.makereadyfuture] the following.

future<void> make_ready_future();
template <class T>
future<void> make_ready_future();

Effects: The function creates a shared state immediately ready for future<void> .

Returns: A future associated with that shared state.

Postconditions: The returned future contains a value.

Throws: Any exception thrown by the construction.

Remark: The second overload shall not participate in overload resolution until is_void_v<T> .

template <class T>
future<decay_unwrap_t<T>> make_ready_future(T&& x);

Effects: The function creates a shared state immediately ready emplacing the decay_unwrap_t<T> with
forward<T>(x) .

Returns: A future associated with that shared state.

Postconditions: The returned future contains a value.

Throws: Any exception thrown by the construction.

Remark: This function shall not participate in overload resolution until the template argument T is deduced.

template <class T, class ...Args>
future<T> make_ready_future(Args&& ...args);
template <class T, class U, class ...Args>
future<T> make_ready_future(initializer_list<U> il, Args&& ...args);

Effects: The function creates a shared state immediately ready emplacing the T with T{args...} for the first
and with T{il, args...} .

Returns: A future associated with that shared state.

Postconditions: The returned future contains a value.

Throws: Any exception thrown by the construction.

Remark: These functions shall not participate in overload resolution until the
is_constructible_v<T, Args&&> and
is_constructible_v<T, initializer_list<U> , Args&&> respectively.

Boost.Thread contains an implementation of the emplace value functions. make.impl contains the implementation of
the factories.

The authors would like to have an answer to the following points if there is at all an interest in this proposal. Most of
them are bike-shedding about the name of the proposed functions:

The authors prefer to use SFINAE for make_ready_future so that we can check if the overload is allowed using
SFINAE. This is useful in the context of [], where make<TC>(args) is defined using SFINAE. Otherwise we could
add Requires clauses.

shared_ptr and unique_ptr factories make_shared and make_unique emplace already the

Implementability

Open Points

Do we want make_ready_future to use SFINAE?

emplace_ versus make_ factories

http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
https://github.com/viboes/std-make/blob/master/include/experimental/std_make_v1/make.hpp

underlying type and are prefixed by make_ . For coherency purposes the function emplacing future should use also
make_ prefix.

promise<R> has a set_value member function that accepts a

void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

There is no reason for constructing an additional R to set the value, we can emplace it

template <typename ...Args>
void promise::set_value(Args&& as);

optional names this member function emplace . However, a promise accepts to be set only once, and so the
function name should be different. Should we add a new member emplace function to promise<T> or
overload set_value ?

Aaryaman Sagar has proposed to add the 'inplacet' parameter

template <typename... Args>
void set_value(std::in_place_t, Args&&... args);

template <typename U, typename... Args>
void set_value(std::in_place_t, std::initializer_list<U> ilist, Args&&...)

Do we want to be so explicit?

In addition to emplace value functions we could also have emplace exceptions functions. This would need to update
also exception_ptr emplace factories. While this cases can perform better, the exceptional case need less
optimizations.

promise::emplace versus promise::set_value

If promise::set_value is retained, do we want to add
'inplacet'?

Future work

Acknowledgements

Thanks to Jonathan Wakely for his suggestion to limit the proposal to the emplace value cases which should be more
consensual. Many thanks to Agustín K-ballo Bergé from which I learn the trick to implement the different overloads.
Many thanks to Patrice Roy for presenting the P0319R0. Thanks to Aaryaman Sagar for the `inplacet' suggestion.

N4480 N4480 - Working Draft, C++ Extensions for Library Fundamentals

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

P0032R0 P0032 - Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

P0032R2 P0032 - Homogeneous interface for variant, any and optional - Revision 1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf

P0159R0 P0159 - Draft of Technical Specification for C++ Extensions for Concurrency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

P0318R0 decay_unwrap and unwrap_reference

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf

P0338R0 - C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

make.impl C++ generic factory - Implementation

https://github.com/viboes/std-make/blob/master/include/experimental/stdmakev1/make.hpp

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0318r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
https://github.com/viboes/std-make/blob/master/include/experimental/std_make_v1/make.hpp
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html

