
Document number: P0288R1
Date: 2017–02–06
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)

A polymorphic wrapper for all Callable objects (rev. 3)
A new template unique_function is proposed. It is just like std::function, minus the
copy constructor and copy assignment operator. This allows it to wrap function objects
containing non-copyable resources, per LEWG issue 34. It also helps to express the idea of an
operation that can only be performed once.

1. Motivation
In the beginning, boost::function was designed as a generalization of function pointers —
as opposed to a radically broad notion of function values. Function objects were small and
stateless. Users with a penchant for adventure and compiler diagnostics could use
boost::bind, and given a few arguments, it would push function into the heap allocation
regime. More prudent engineering would call for a manually-defined local class, filtered through
boost::ref to squash the inefficient value semantics.
Times have changed. Lambda-capture syntax like [u = std::move(u)](io_response r)
{r.send_next(u);} is not only trendy, but safe and convenient. Functional programming
patterns are actually gaining traction, which means that real-world function objects are expected
to do whatever other objects do, and to encapsulate whatever might be found in a local scope.
Non-copyable objects are not uncommon, and non-copyability is viral.
Separately, since function is useful as an interface type, it can delegate resource ownership to
a library. Before a library frees a resource, it may still be safely referenced locally. Such cases
require a guarantee that the target object used by the library is the original one and not a copy.
Finally, when performance analysis finds that a copying a particular class causes a bottleneck,
one may wish to delete its copy constructor, to prevent the problem from returning. Likewise,
copy constructors of target objects that are never copied are template bloat.

1.1. Difficulty of workarounds
An event dispatching system, for example, might wish to manage ownership of event handler
objects via std::function. This would require that the user provide copyable objects even
though each will remain unique.
Current workarounds include using reference_wrapper as the function target type, trying to
pass a unique std::function object always by reference or reference_wrapper, or
defining an always-throwing copy constructor. These sacrifice overhead or user-friendly
ownership semantics for artificial copyability.

�1

With unique_function
An event-handler map is trivial to implement if the library is willing to demand that the handlers
be copyable. The end result is optimal, but inflexible.
std::map< std::string, std::function< void() > > commands;
 // ^ Want unique_function here.

template< typename ftor >
void install_command(std::string name, ftor && handler) {
 commands.insert({ std::move(name),
 std::forward< ftor >(handler) });
}

Without unique_function
Improving the external interface quality by allowing non-copyable types is fairly difficult.
Efficiency is also reduced. In particular, we need two parallel type erasures.
struct owned_function {
 // Order of these members is significant, and this must remain an aggregate.
 std::function< void() > wrapper;
 std::unique_ptr< void, void (*)(void *) > alloc;
};
std::map< std::string, owned_function > commands;

template< typename ftor, typename ... a >
void install_command(std::string name, a && ... arg) {
 auto ptr = std::make_unique<ftor>(std::forward< a >(arg) ...);
 commands.insert(std::make_pair(
 std::move(name), owned_function {
 std::ref(* ptr.get()),
 { // unique_ptr constructor arguments
 ptr.release(), // Must call get() before release().
 [] (void *p) { delete static_cast< ftor * >(p); }
 },
 }
));
}

template< typename ftor >
void install_command(std::string name, ftor && handler) {

install_command< std::decay_t< ftor >, ftor && >
(std::move(name), std::forward< ftor >(handler));

}

Plenty of other solutions exist, perhaps some simpler than this. Arriving at a simple solution is
hard, though! The above has non-obvious aspects in overload resolution, order of evaluation, and
unique_ptr deleter customization. It works around some unimplemented DRs and exposes
some other bugs. Many solutions are less flexible or incorporate extraneous functionality such as
data structures. None are easy or efficient enough, and certainly none are idiomatic.

�2

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2354
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66284

2. Proposal
A new template unique_function is introduced. Its members and their behavior are identical
to std::function, except:

• Its copy constructor and copy assignment operator are defined as deleted.

• It does not use (nor require the existence of) copy constructors of target objects.

• Zero-overhead converting constructors and assignment operators from the corresponding
std::function specialization are provided.

There are no changes to std::function whatsoever. The new template can be placed in
namespace std or within std::experimental. Let its feature test macro be called
__cpp_lib_[experimental_]unique_function.
The Fundamentals TS already specifies a class experimental::function with polymorphic
allocation policies. Its changes are orthogonal to this proposal, but to this author’s knowledge no
current public implementation exists. This proposal’s prototype also implements P0043 Function
wrappers with allocators and noexcept, which generalizes the allocation features of
experimental::function and thus could be used as the basis for a shipping implementation
of it. Bearing std::function interoperability in mind, though, direct adoption into the
standard is preferable.

2.1. Rationale
This is a minimalistic proposal. Other problems exist in std::function, but they are better
solved separately.

Introducing a new template
A new primary template is introduced, as opposed to a specialization of std::function. Good
generic code is written against an interface (e.g. Callable or availability of target), without
naming an implementation (e.g. function). Existing templates which do hard-code function
support may not be compatible with unique_function anyway.

Naming
The name unique_function is chosen because it only permits one instance of the target value.
Like unique_ptr, it does not generate duplicate copies. While it is possible for two function
objects to have identical invocation behavior, this does not necessarily contradict uniqueness:
Behavioral equivalence is an impossible problem. On the other hand, it is intuitive to think of
resources managed by e.g. unique_ptr as unique. When a reader sees unique_function, it
may be assumed that it holds, and is, such a resource.
Another possible name is move_only_function. This would confusingly refer to the behavior
of the wrapper itself as opposed to qualities of the wrapped object. The target may be copyable,
or (given in-place construction) non-movable.
When such a utility has been implemented (see §6 Implementations below), unique_function
has been the more popular name.

�3

Interoperability
When std::function is converted to unique_function, the target is transferred just as if it
were a copy- or move-construction. No wrapping overhead will be added when an interface
migrates std::function parameters to unique_function.

No in-place construction
In-place construction has been removed from this proposal since N4543. It may be added as a
uniform interface with variant, any, and other type-erasure facilities.

const safety
One known defect of std::function is that it offers a const-qualified call operator which
invokes the target by a non-const access path. This problem is not addressed by this proposal. It
is addressed by P0045R1 §2.1 like so:
1. Introduce a wrapper which performs const access: function<void() const>.
2. Add a const-unqualified operator() overload to wrappers like function<void()>.
3. Deprecate the legacy, const-qualified call operator in unqualified wrappers.
Ignoring the first step, the second two steps are already a conforming extension, and do not
require any proposal.
Rather than introduce unique_function with a soon-to-be deprecated call operator signature,
we could simply never provide it in the first place. However, this would render const
unique_function uncallable, with no user recourse except to switch back to function or to
use const_cast. (For example, a unique_function nonstatic member would not be callable
from a const& reference to a class.) This would be an unacceptable defect.
The idea of introducing unique_function with the const qualification defect has proven
controversial, so P0045R1 recommends to omit the deprecated call operator from
unique_function.

3. Usage
unique_function is available as a solution when std::function balks at a non-copyable
target. In the broad middle ground of usage where wrappers may be copied but aren’t, the choice
between unique_function and std::function comes down to aesthetics.

Interfaces
Non-template interfaces taking function objects are encouraged to accept unique_function
instead of std::function. Like function, it should canonically be passed by value. Moving
should incur minimal overhead, and there is no potentially expensive copy or heap allocation.
When returning polymorphic function objects to the user, it is still better to use std::function
if possible, for the sake of flexibility.

�4

Passing by value
std::ref is used to non-destructively pass unique_function using the by-value convention,
for example to the standard Algorithms library, when it will not be retained. This is also a good
practice for std::function, as it achieves equivalent behavior without incurring a potentially
expensive copy.

4. Method of description
Differences are given relative to P0045R1 Qualified std::function signatures applied to the
working draft N4618. That proposal is considered a prerequisite to this one because it is
undesirable to introduce the new class with a const-unsafe call operator.
The text, including the unique_function synopsis, should reflect any adopted changes to
function from other proposals or defect resolutions, for example, if noexcept is restored to
the move constructor.
function continues to evolve according to defect reports, and several further proposals are
foreseeable. Therefore, much work will be saved by avoiding text duplication. It is proposed to
use a method of description where function and unique_function share most of their
specification.

5. Proposed wording
First, adjust [func.wrap] §20.9.12 to broader scope.

¶1 This subclause describes a polymorphic wrapper class templates that encapsulates
encapsulate arbitrary callable objects.

Remove a specific mention of function from [func.wrap.badcall].

¶1 An exception of type bad_function_call is thrown by function::operator() (20.9.12.2.4)
when the function the call operator [func.wrap.func.inv] of a polymorphic wrapper object that
has no target.

Change the title of the [func.wrap.func] clause.

20.9.12.2 Class template function Call wrapper class templates [func.wrap.func]

Add a unique_function synopsis after that of function.

template<Sig> class unique_function {
public:

// construct/copy/destroy:
unique_function() noexcept;
unique_function(nullptr_t) noexcept;
unique_function(const unique_function&) = delete;
unique_function(unique_function&&);

�5

template<class F> unique_function(F);

unique_function& operator=(const unique_function&) = delete;
unique_function& operator=(unique_function&&);
unique_function& operator=(nullptr_t) noexcept;
template<class F> unique_function& operator=(F&&);
template<class F> unique_function& operator=(reference_wrapper<F>)

noexcept;

~unique_function();

// Polymorphic call wrapper modifiers:
void swap(unique_function&) noexcept;

// Polymorphic call wrapper capacity:
explicit operator bool() const noexcept;

// Polymorphic call wrapper invocation:
R operator()(ArgTypes...) qualifiers;

// R, ArgTypes..., and qualifiers are the return type, the parameter-type-list,  
// and the sequence “cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt” 

// of the function type Sig, respectively.

// Polymorphic call wrapper target access:
const type_info& target_type() const noexcept;
template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

};

// Null pointer comparisons:
template <typename Sig>
 bool operator==(const unique_function<Sig>&, nullptr_t) noexcept;

template <typename Sig>
 bool operator==(nullptr_t, const unique_function<Sig>&) noexcept;

template <typename Sig>
 bool operator!=(const unique_function<Sig>&, nullptr_t) noexcept;

template <typename Sig>
 bool operator!=(nullptr_t, const unique_function<Sig>&) noexcept;

// specialized algorithms:
template <typename Sig>  
 void swap(unique_function<Sig>&, unique_function<Sig>&) noexcept;

�6

Duplicate some of the forgoing synopsis into the <functional> synopsis at [function.objects].

template<typename Sig> class unique_function;

template<typename Sig>  
 void swap(unique_function<Sig>&, unique_function<Sig>&) noexcept;

template<typename Sig>
 bool operator==(const unique_function<Sig>&, nullptr_t) noexcept;
template<typename Sig>
 bool operator==(nullptr_t, const unique_function<Sig>&) noexcept;
template<typename Sig>
 bool operator!=(const unique_function<Sig>&, nullptr_t) noexcept;
template<typename Sig>
 bool operator!=(nullptr_t, const unique_function<Sig>&) noexcept;

Back to [func.wrap.func], adjust the high-level description following the synopsis.

¶1 The function class template provides and unique_function class templates provide
polymorphic wrappers that generalize the notion of a function pointer. Wrappers can store, copy,
and call arbitrary callable objects (20.9.1), given a call signature (20.9.1), allowing functions to
be first-class objects.
¶2 […]
¶3 A specialization function<Sig> or unique_function<Sig> is a call wrapper
([func.def]) whose call signature is Sig.

Add a paragraph to clarify the present method of description. The intent is to follow the stylistic
precedent of the unnamed class resource_adaptor_imp in LFTS v1 (N4480) §8.7.1. The
meta-name polymorphic_call_wrapper appears twice in the declaration of non-member
swap; though the synopsis is already clear, this paragraph should avert any suggestion that a
unique_function can be swapped with a function.

¶ The following clauses describe the templates function and unique_function. In each
clause, the name polymorphic_call_wrapper denotes either function or
unique_function. In descriptions of class members, polymorphic_call_wrapper refers
to the enclosing class.

Adjust the constructor specifications in [func.wrap.func.con] §20.9.12.2.1.

function Polymorphic call wrapper construct/copy/destroy [func.wrap.func.con]
function polymorphic_call_wrapper() noexcept;

¶1 Postconditions: !*this.
function polymorphic_call_wrapper(nullptr_t) noexcept;

¶- Postconditions: !*this.

�7

The copy constructor is not affected because it is defined as deleted for unique_function, per
the synopsis.

function(const function& f);

¶4 Postconditions: […]
¶5 Throws: […]
function(function  
polymorphic_call_wrapper(polymorphic_call_wrapper && f);

¶6 Effects: […]
template<class F> function polymorphic_call_wrapper(F f);

¶7 Requires: For function constructors, F shall be CopyConstructible. For
unique_function constructors, F shall be MoveConstructible.
¶8 Remarks: […]

Modify a bullet in ¶9 and add a subsequent new paragraph, to handle conversions between
specializations of function and unique_function.

¶9 Postconditions: …
¶9.3 — F is an instance of the function a polymorphic call wrapper class template, and !f.
¶? Otherwise, if F is a specialization of the function a polymorphic call wrapper class
template, and the return and parameter types of its call signature are respectively identical to
those of Sig, then the target of *this is the target of f or a move-constructed object of the same
type.
¶10 Otherwise, *this targets a copy of f initialized …
¶11 Throws: […]
¶12 Effects: […]
¶13 Returns: […]
function polymorphic_call_wrapper& operator=  

(function polymorphic_call_wrapper&& f);

¶14 Effects: […]
¶15 Returns: […]
function polymorphic_call_wrapper& operator=(nullptr_t) noexcept;

¶16 Effects: […]
¶17 Postconditions: […]
¶18 Returns: […]
template<class F> function polymorphic_call_wrapper& operator=(F&& f);

¶19 Effects:

�8

function polymorphic_call_wrapper(std::forward<F>(f)).swap(*this);
¶20 Returns: […]
¶21 Remarks: […]
template<class F> function polymorphic_call_wrapper&operator=  

(reference_wrapper<F> f) noexcept;

¶22 Effects: function polymorphic_call_wrapper(f).swap(*this);
¶23 Returns: […]
~function ~polymorphic_call_wrapper();

¶24 Effects: […]

Likewise adjust swap in [func.wrap.func.mod].

function Polymorphic call wrapper modifiers [func.wrap.func.mod]
void swap(function polymorphic_call_wrapper& other) noexcept;

¶1 Effects: […]

Adjust the next several titles.

function Polymorphic call wrapper capacity [func.wrap.func.cap]
function Polymorphic call wrapper invocation [func.wrap.func.inv]
function Polymorphic call wrapper target access [func.wrap.func.targ]

Likewise adjust the comparison operators in [func.wrap.func.nullptr].

template <typename Sig>
bool operator==(const function polymorphic_call_wrapper  

<Sig>& f, nullptr_t) noexcept;
template <typename Sig>
bool operator==(nullptr_t, const function polymorphic_call_wrapper  

<Sig>& f) noexcept;

¶1 Returns: !f.
template <typename Sig>  
bool operator!=(const function polymorphic_call_wrapper  

<Sig>& f, nullptr_t) noexcept;
template <typename Sig>  
bool operator!=(nullptr_t, const function polymorphic_call_wrapper  

<Sig>& f) noexcept;

¶2 Returns: (bool) f.

�9

And swap again in [func.wrap.func.alg].

template<typename Sig>
void swap(function polymorphic_call_wrapper<Sig>& f1,  

function polymorphic_call_wrapper<Sig>& f2) noexcept;

¶1 Effects: f1.swap(f2);

Finally, add a feature test macro, __cpp_lib_unique_function.

6. Future directions
Given in_place_type construction, unique_function would support non-movable target
objects. This feature was removed since the previous revision, N4543, and it will be proposed
again separately.
It may typically be easier to implement SFINAE, not a hard error, when a std::function
constructor encounters a non-copyable target type. If function and unique_function obtain
their constructors from a common template, unique_function cannot evaluate
is_copy_constructible if that metafunction may instantiate a copy constructor. Let’s keep
an eye on this issue, but it’s not a defect yet.
It is possible, without added overhead, to convert a unique_function value to function,
provided it was initialized by conversion from function. This could be implemented as an
explicit conversion, with an exception thrown upon failure.

7. Implementations
Matt Calabrese implemented a unique_function together with further extensions. He worked
to combat bloat and developed the principle of minimizing constructor ODR-use.
In mid 2014, Agustín “K-ballo” Bergé implemented a unique_function within the HPX
library.
In early 2015, StackOverflow user “Yakk” implemented a move_only_function to answer a
question. S/he included support of value categories and const-qualification as well.1

In mid 2015, I attempted to implement this proposal within the libc++ function
implementation. Due to difficulties in achieving interoperability of target objects, I gave up and
started from scratch.
My cxx_function library implements this proposal together with P0042R0 std::recover: 2

undoing type erasure, P0043R0 Function wrappers with allocators and noexcept, P0045R0
Overloaded and qualified std::function, and in-place construction. It adds little compile-
time overhead and it outperforms libc++ and libstdc++ at runtime.

 http://stackoverflow.com/questions/28179817/how-can-i-store-generic-packaged-tasks-in-a-container1

 https://github.com/potswa/cxx_function2

�10

http://stackoverflow.com/questions/28179817/how-can-i-store-generic-packaged-tasks-in-a-container
https://github.com/potswa/cxx_function
https://github.com/K-ballo/hpx/blob/master/hpx/util/detail/unique_function_template.hpp

In early 2016, the function2 library by Denis Blank (Naios) likewise implements a 3

unique_function together with other enhancements including rvalues and cv-qualifiers.
It is likely that other implementations exist. This idea is ripe for standardization.

8. Kudos
Kudos to Geoffrey Romer for initiating the direction in N4159.
Thanks to Daniel Krügler for kind direction and in-depth review.

Revision history
N4543 — Initial revision.
P0288R0 — Removed in-place construction.  

Added full proposed text.  
Updated with implementation experience and feedback from Kona discussion.

P0288R1 — Expand rationale regarding method of description.  
Mention P0045R1 regarding const-correctness issue.  
Minor changes to standardese content and formatting.  
Update standardese to latest working draft standard.

 http://naios.github.io/function2/3

�11

http://naios.github.io/function2/

