
Document number: P0196R3

Date: 2017-06-15

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

In the same way we have NullablePointer types with nullptr to mean a null value, this proposal defines Nullable requirements
for types for which none() means the null value. This paper proposes some generic none() factories for Nullable types like
optional , pointers and smart pointers.

Note that for Nullable types the null value doesn't mean an error, it is just a value different from all the other values, it is none of the
other values.

Introduction Motivation and Scope Proposal Design Rationale Proposed Wording Implementability Open points Acknowledgements
History References

There are currently two adopted single-value (unit) types, nullptr_t for pointer-like classes and nullopt_t for
optional<T> . P0088R0 proposes an additional monostate_t as yet another unit type. Most languages get by with just one

unit type. P0032R0 proposed a new none_t and corresponding none literal for the class any . The feedback from the Kona
meeting was that should not keep adding new “unit” types like this and that we need to have a generic none literal at least for non
pointer-like classes.

Revision 0 for this paper presented a proposal for a generic none_t and none (no-value) factory, creates the appropriate not-a-
value for a given Nullable type.

Revision 1 presented two kind of none factories none() and none<T>() .

Revision 2 makes it possible to consider pointer-like types a Nullable.

Revision 3 add a new nullable::deref customization point and a lot of algorithms that can be built on top of Nullable thanks to
this addition, as Functor transform , ApplicativeFunctor ap , Monad bind , SumType visit , and some minor algorithms
value_or and apply_or .

Having a common syntax and semantics for this factories would help to have more readable and teachable code, and potentially
allows us to define generic algorithms that need to create such a no-value instance.

Note however that we would not be able to define interesting algorithms without having other functions around the Nullable concept
as e.g. being able to create a Nullable wrapping instance containing the associated value (the make factory P0338R2) and observe

Generic none() factories for Nullable types

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#history
file:///Users/viboes/github/std_make/doc/proposal/nullable/p0196r3.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf

the value or the not-a-value a Nullable type contains, or visitation type switch as proposed in P0050R0, or the getter functions
proposed in [P0042], or Functor/Monadic operations. This is left for future proposals.

BEFORE AFTER

Construction

int* p = nullptr;
unique_ptr<int> sp = nullptr;
shared_ptr<int> sp = nullptr;
optional<int> o = nullopt;

//unique_ptr<int> sp = unique_ptr{};
//shared_ptr<int> sp = shared_ptr{};
//optional<int> o = optional{};
any a = any{};

int* p = none();
unique_ptr<int> sp = none();
shared_ptr<int> sp = none();
optional<int> o = none();
any a = none();

//int* p = none<add_pointer>();
shared_ptr<int> sp = none<shared_ptr>();
shared_ptr<int> sp = none<unique_ptr>();
optional<int> o = none<optional>();
any a = none<any>();

Conversion

void g(int*);
void f(unique_ptr<int>);
void f(optional<int>);
void f(any);

g(nullptr);
f(nullptr);
f(nullopt);

//f(unique_ptr{});
//f(optional{});
f(any{});

void g(int*);
void f(unique_ptr<int>);
void f(optional<int>);
void f(any);

//g(none<add_pointer>());
f(none<unique_ptr>());
f(none<optional>());
f(none<any>());

Return

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0050r0.pdf

template <template <class ...> class TC, class T>
TC<T> f(T) {
 return TC<T>{};
}

f<add_pointer_t>(a)
f<optional>(a)
f<unique_ptr>(a)
f<shared_ptr>(a)

template <template <class ...> class TC, class T>
invoke_t<quote<TC>,T> f(T) {
 return none<TC>();
}

//f<add_pointer>(a)
f<optional>(a)
f<unique_ptr>(a)
f<shared_ptr>(a)

template <class TC, class T>
invoke_t<TC,T> f(T) {
 return none<TC>();
}

f<add_pointer<_t>>(a)
f<optional<_t>>(a)
f<unique_ptr<_t>>(a)
f<shared_ptr<_t>>(a)
f<any>(a)

There is a proliferation of “unit” types that mean no-value type,

nullptr_t for pointer-like objects and std::function ,
std::nullopt_t for optional<T> ,
std::monostate unit type for std::variant<std::monostate_t, Ts...> (in (P0088R0),
none_t for any (in P0032R0 - rejected as a specific unit type for any)

Having a common and uniform way to name these no-value types associated to Nullable types would help to make the code more
consistent, readable, and teachable.

A single overarching none_t type could allow us to define generic algorithms that operate across these generic Nullable types.

Generic code working with Nullable types, needs a generic way to name the null value associated to a specific Nullable type N .
This is the reason d'être of none<N>() .

Before going too far, let me show you the current situation with nullptr and to my knowledge why nullptr was not retained
as no-value constant for optional<T> - opening the gates for additional unit types.

All the pointer-like types in the standard library are implicitly convertible from and equality comparable to nullptr_t .

Motivation and Scope

Why do we need a generic none() literal factory

Possible ambiguity of a single no-value constant

NullablePointer types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

 int* ip = nullptr;
 unique_ptr<int> up = nullptr;
 shared_ptr<int> sp = nullptr;
 if (up == nullptr) ...
 if (ip == nullptr) ...
 if (sp == nullptr) ...

Up to now everything is ok. We have the needed context to avoid ambiguities.

However, if we have an overloaded function as e.g. print

 template <class T>
 void print(unique_ptr<T> ptr);
 template <class T>
 void print(shared_ptr<T> ptr);

The following call would be ambiguous

 print(nullptr);

Wait, who wants to print nullptr ? Surely nobody wants. Anyway we could add an overload for nullptr_t

 void print(nullptr_t ptr);

and now the last overload will be preferred as there is no need to conversion.

If we want however to call to a specific overload we need to build the specific pointer-like type, e.g if wanted the shared_ptr<T>

overload, we will write

 print(shared_ptr<int>{});

Note that the last call contains more information than should be desired. The int type is in some way redundant. It would be great
if we could give as less information as possible as in

 print(nullptr<shared_ptr>));

Clearly the type for nullptr<shared_ptr> couldn't be nullptr_t , nor a specific shared_ptr<T> . So the type of
nullptr<shared_ptr> should be something different, let me call it e.g. nullptr_t<shared_ptr>

You can read nullptr<shared_ptr> as the null pointer value associated to shared_ptr .

Note that even if template parameter deduction for constructors P0091R0 is adopted we are not able to write the following, as the
deduced type will not be the expected one.

 print(shared_ptr(nullptr));

We are not proposing these for nullptr in this paper, it is just to present the context. To the authors knowledge it has been
accepted that the user needs to be as explicit as needed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

 print(shared_ptr<int>{});

Lets continue with optional<T> . Why the committee didn't wanted to reuse nullptr as the no-value for optional<T> ?

optional<int> oi = nullptr;
oi = nullptr;

I believe that the two main concerns were that optional<T> is not a pointer-like type even if it defines all the associated
operations and that having an optional<int*> , the following would be ambiguous

optional<int*> sp = nullptr;

We need a different type that can be used either for all the Nullable types or for those that are wrapping an instance of a type, not
pointing to that instance. At the time, as the problem at hand was to have an optional<T> , it was considered that a specific
solution will be satisfactory. So now we have

 template <class T>
 void print(optional<T> o);

 optional<int> o = nullopt;
 o = nullopt;
 print(nullopt);

Some could think that it is better to be specific. But what would be wrong having a single way to name this no-value for a specific
class using none ?

 optional<int> o = none();
 any a = none();
 o = none();
 a = none();

So long as the context is clear there is no ambiguity.

We could as well add the overload to print the no-value none

 void print(none_t);

and

 print(none());
 print(optional<int>{});

So now we can see any as a Nullable if we provide the conversions from none_t

Why nullopt was introduced?

Moving to Nullable types

 any a = none();
 a = none();
 print(any{});

We don't provide a solution to the following use case. How to initialize an optional<any> with an std::any none()

optional<any> oa2 = any{}; // assert(o)
optional<any> oa1 = none(); // assert(! o)

If we want that

optional<any> oa1 = none<any>(); // assert(o)

the resulting type for none<any>() shouldn't none_t and we will need a nullany_t . This paper don't includes yet this
nullany_t , but the author considers that this is the best direction. Have a common none_t that canbe used when there is no

ambiguity and none<T> to disambiguate.

Note that any is already Nullable , so how will this case be different from

optional<optional<int>> oo1 = optional<int>{};
optional<optional<int>> oo2 = nullopt;

or from nested smart pointers.

shared_ptr<unique_ptr<int>> sp1 = unique_ptr<int>{};
shared_ptr<unique_ptr<int>> sp2 = nullptr;

However we propose a solution when the result type of not-a-value of the two Nullables is a different type.

optional<unique_ptr<int>> oup1 = none(); // assert(! o)
optional<unique_ptr<int>> oup1 = nullptr; // assert(o)

optional<unique_ptr<int>> oup1 = none<optional>; // assert(! o)
optional<unique_ptr<int>> oup1 = none<unique_ptr>; // assert(o)

The result type of none<Tmpl>() depends on the Tmpl parameter.

There are other operations between the wrapping type and the unit type, such as the mixed equality comparison:

 o == nullopt;
 a == any{};

Type erased classes as std::any don't provide comparison.

Nesting Nullable types

Other operations involving the unit type

However Nullable types wrapping a type as optional<T> can provide mixed comparison if the type T is ordered.

 o > none()
 o >= none()
 ! (o < none())
 ! (o <= none())

So the question is whether we can define these mixed comparisons once for all on a generic none_t type and a model of Nullable.

 template < Nullable C >
 bool operator==(none_t, C const& x) { return ! std::has_value(x); }
 template < Nullable C >
 bool operator==(C const& x, none_t { return ! std::has_value(x); }
 template < Nullable C >
 bool operator!=(none_t, C const& x) { return std::has_value(x); }
 template < Nullable C >
 bool operator!=(C const& x, none_t) { return std::has_value(x); }

The ordered comparison operations should be defined only if the Nullable class is Ordered.

std::nullopt_t is not DefaultConstructible, while monostate_t must be DefaultConstructible.

std::nullopt_t was required not to be DefaultConstructible so that the following syntax is well formed for an optional object
o

o = {}

So we need a none_t that is DefaultConstructible but that {} is not deduced to nullopt_t{} . This is possible if
nullopt_t default constructor is explicit (See LWG 2510, CWG 1518 and CWG 1630).

The std::experimental::none_t is a user defined type that has a single value std::experimental::none() . The
explicit default construction of none_t{} is equal to none() . We say none_t is a unit type.

Note that neither nullopt_t , monostate_t nor the proposed none_t behave like a tag type so that LWG 2510 should not
apply.

Waiting for CWG 1518 the workaround could be to move the assignment of optional<T> from a nullopt_t to a template as
it was done for T .

Even if both types contains the none word they are completely different. std::experimental::nonesuch is a bottom type with
no instances and, std::experimental::none_t is a unit type with a single instance.

The intent of nonesuch is to represent a type that is not used at all, so that it can be used to mean not detected. none_t intent
is to represent a type that is none of the other alternatives in the sum type.

Differences between nullopt_t and monostate_t

Differences between nonesuch and none_t

nullable::none_type_t and nullable::value_type_t .

http://cplusplus.github.io/LWG/lwg-active.html#2510
http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630
http://cplusplus.github.io/LWG/lwg-active.html#2510
http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518

A Nullable can be considered as a sum type. It is always useful reflect the related types. nullable::none_type_t and
nullable::value_type_t give respectively the associated non-a-value and the value types.

This paper proposes to

add none_t / none() ,
add none<TC>() , none<Tmpl>() ,
add deref(n) ,
add requirements for Nullable and StrictWeaklyOrderedNullable types, and derive the mixed comparison operations on them,
add some minor changes to optional , any to be constructed from none_t and to customize the Nullable
requirements.

These changes are entirely based on library extensions and do not require any language features beyond what is available in C++14.
There are however some classes in the standard that needs to be customized.

This paper depends in some way on the helper classes proposed in P0343R1, as e.g. the place holder _t and the associated
specialization for the type constructors optional<_t> , unique_ptr<_t> , shared_ptr<_t> .

The proposed changes are expressed as edits to N4564 the Working Draft - C++ Extensions for Library Fundamentals V2.

Add a "Nullable Objects" section

The std::experimental::none_t is a user defined type that has a factory std::experimental::none() . The explicit
default construction of none_t{} is equal to none() . std::experimental::none_t shall be a literal type. We say
none_t is a unit type.

[Note: std::experimental::none_t is a distinct unit type to indicate the state of not containing a value for Nullable objects.
The single value of this type none() is a constant that can be converted to any Nullable type and that must equally compare to a
default constructed Nullable. —- endnote]

A Nullable type is a type that supports a distinctive null value. A type N meets the requirements of Nullable if:

N satisfies the requirements of EqualityComparable DefaultConstructible, and Destructible,
the expressions shown in the table below are valid and have the indicated semantics, and
N satisfies all the other requirements of this sub-clause.

A value-initialized object of type N produces the null value of the type. The null value shall be equivalent only to itself. A default-
initialized object of type N may have an indeterminate value. [Note: Operations involving indeterminate values may cause

Proposal

Impact on the standard

Proposed Wording

Nullable Objects

No-value state indicator

Nullable requirements

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

undefined behavior. — end note]

No operation which is part of the Nullable requirements shall exit via an exception.

In Table X below, u denotes an identifier, t denotes a non-const lvalue of type N , a and b denote values of type (possibly
const) N, x denotes a (possibly const) expression of type N , and nN denotes std::experimental::none<N>() and
n denotes std::experimental::none() .

Expression Return Type Operational Semantics

nullable::none<N>() none_type_t<N>

N{} post: N{} == nN

N u(n) post: u == nN

N u(nN) post: u == nN

N u = n post: u == nN

N u = nN post: u == nN

N(n) post: N(n) == nN

N(nN) post: N(nN) == nN

std::has_value(x) contextually convertible to bool true if x != nN

a != b contextually convertible to bool !(a == b)

a == np, np == a contextually convertible to bool a == N{}

a != np , np != a contextually convertible to bool !(a == N{})

A type N meets the requirements of StrictWeaklyOrderedNullable if:

N satisfies the requirements of StrictWeaklyOrdered and Nullable.

namespace std {
namespace experimental {
inline namespace fundamentals_v3 {
namespace nullable {

 // class none_t
 struct none_t;

 // none_t relational operators
 constexpr bool operator==(none_t, none_t) noexcept;
 constexpr bool operator!=(none_t, none_t) noexcept;
 constexpr bool operator<(none_t, none_t) noexcept;
 constexpr bool operator<=(none_t, none_t) noexcept;
 constexpr bool operator>(none_t, none_t) noexcept;
 constexpr bool operator>=(none_t, none_t) noexcept;

StrictWeaklyOrderedNullable requirements

Header synopsis [nullable.synop]

 // none_t factory
 constexpr none_t none() noexcept;

 // class traits
 template <class T, class Enabler=void>
 struct traits {};

 // class traits_pointer_like
 struct traits_pointer_like;

 // class traits specialization for pointers
 template <class T>
 struct traits<T*>;

 template <class T>
 constexpr auto none() -> `see below` noexcept;

 template <template <class ...> class TC>
 constexpr auto none() -> `see below` noexcept;

 template <class T>
 using none_type_t = decltype(nullable::none<T>());

 template <class T>
 constexpr bool has_value(T const& v) noexcept;
 template <class T>
 constexpr bool has_value(T* v) noexcept;

 template <class T>
 constexpr auto deref(T&& x);
 template <class T>
 constexpr T& deref(T* ptr);

 template <class N, class T>
 constexpr auto value_or(N&& ptr, T&& val);

 template <class T>
 using value_type_t = decltype(nullable::deref(declval<T>));

 // when type constructible, is a functor
 template <class T, class F>
 constexpr auto transform(T&& n, F&& f);
 // when type constructible, is an applicative
 template <class F, class T>
 constexpr auto ap(F&& f, T&& n);
 // when type constructible, is a monad
 template <class T, class F>
 constexpr auto bind(T&& n, F&& f);

 // sum_type::visit
 template <class N, class F>
 constexpr auto visit(N&& n, F&& f);

 template <class N, class F, class T>
 constexpr auto apply_or(N&& n, F&& f, T&& v);

}

 using nullable::none_t;

 using nullable::none_type_t;
 using nullable::none;
 using nullable::has_value;

 template <class T>
 struct is_nullable;
 template <class T>
 struct is_nullable<const T> : is_nullable<T> {};
 template <class T>
 struct is_nullable<volatile T> : is_nullable<T> {};
 template <class T>
 struct is_nullable<const volatile T> : is_nullable<T> {};
 template <class T>
 struct is_nullable<T*> : true_type {};

 template <class T>
 constexpr bool is_nullable_v = is_nullable<T>::value ;

 template <class T>
 struct is_strict_weakly_ordered_nullable;

namespace nullable {
 // Comparison with none_t
 template < class C >
 bool operator==(none_t, C const& x) noexcept;
 template < class C >
 bool operator==(C const& x, none_t) noexcept;
 template < class C >
 bool operator!=(none_t, C const& x) noexcept;
 template < class C >
 bool operator!=(C const& x, none_t) noexcept;

 template < class C >
 bool operator<(none_t, C const& x) noexcept;
 template < class C >
 bool operator<(C const& x, none_t) noexcept;
 template < class C >
 bool operator<=(none_t, C const& x) noexcept;
 template < class C >
 bool operator<=(C const& x, none_t) noexcept;
 template < class C >
 bool operator>(none_t, C const& x) noexcept;
 template < class C >
 bool operator>(C const& x, none_t) noexcept;
 template < class C >
 bool operator>=(none_t, C const& x) noexcept;
 template < class C >
 bool operator>=(C const& x, none_t) noexcept;

}
}
}
}

The struct none_t is an empty structure type used as a unique type to indicate the state of not containing a value for Nullable

No-value state indicator [nullable.none_t]

objects. It shall be a literal type.

namespace nullable {
 struct none_t{
 explicit none_t() = default;
 template <class T>
 operator T*() const noexcept { return nullptr; }
 };
}

namespace nullable {
 constexpr bool operator==(none_t, none_t) noexcept { return true; }
 constexpr bool operator!=(none_t, none_t) noexcept { return false; }
 constexpr bool operator<(none_t, none_t) noexcept { return false; }
 constexpr bool operator<=(none_t, none_t) noexcept { return true; }
 constexpr bool operator>(none_t, none_t) noexcept { return false; }
 constexpr bool operator>=(none_t, none_t) noexcept { return true; }
}

[Note: none-t objects have only a single state; they thus always compare equal. — end note]

namespace nullable {
 constexpr none_t none() noexcept { return none_t{}; }
}

namespace nullable {
 template <class T, class Enabler=void>
 struct traits {};

 // class traits_pointer_like
 struct traits_pointer_like
 {
 static constexpr
 nullptr_t none() noexcept { return nullptr; }
 template <class Ptr>
 static constexpr
 bool has_value(Ptr ptr) { return bool(ptr) }
 };

 // class traits specialization for pointers
 template <class T>
 struct traits<T*>
 : traits_pointer_like<T*>
 {};
}

none_t relational operators [nullable.none_t.rel]

none_t factory [nullable.none_t.fact]

class traits [nullable.traits]

namespace nullable {
 template <class T>
 constexpr auto none() ->
 decltype(nullable::traits<T>::none()) noexcept;

 template <template <class ...> class TC>
 constexpr auto none() ->
 decltype(none<type_constructor_t<meta::quote<TC>>>()) noexcept;
}

namespace nullable {
 template <class T>
 bool has_value(T const& v) noexcept;
 template <class T>
 bool has_value(T* v) noexcept;
}

 template <class T>
 struct is_nullable;
 template <class T>
 struct is_nullable<const T> : is_nullable<T> {};
 template <class T>
 struct is_nullable<volatile T> : is_nullable<T> {};
 template <class T>
 struct is_nullable<const volatile T> : is_nullable<T> {};

 template <class T>
 constexpr bool is_nullable_v = is_nullable<T>::value ;

 template <class T>
 struct is_nullable<T*> : true_type {};

 template <class T>
 struct is_strict_weakly_ordered_nullable :
 conjunction<is_strict_weakly_ordered<T>, is_nullable<T>> {};

Template function none [nullable.none]

Template function has_value [nullable.has_value]

Template class is_nullable [nullable.is_nullable]

Template class is_strict_weakly_ordered_nullable
[nullable.isstrictweaklyorderednullable]

Nullable comparison with none_t [nullable.noneteq_ops]

namespace nullable {
 template < class C >
 bool operator==(none_t, C const& x) noexcept
 { return ! ::std::has_value(x); }
 template < class C >
 bool operator==(C const& x, none_t) noexcept
 { return ! ::std::has_value(x); }
 template < class C >
 bool operator!=(none_t, C const& x) noexcept
 { return ::std::has_value(x); }
 template < class C >
 bool operator!=(C const& x, none_t) noexcept
 { return ::std::has_value(x); }

Remark: The previous functions shall not participate in overload resolution unless C satisfies * Nullable*.

 template < class C >
 bool operator<(none_t, C const& x) noexcept
 { return ::std::has_value(x); }
 template < class C >
 bool operator<(C const& x, none_t) noexcept
 { return false; }
 template < class C >
 bool operator<=(none_t, C const& x) noexcept
 { return true; }
 template < class C >
 bool operator<=(C const& x, none_t) noexcept
 { return ! ::std::has_value(x); }
 template < class C >
 bool operator>(none_t, C const& x) noexcept
 { return false; }
 template < class C >
 bool operator>(C const& x, none_t) noexcept
 { return ::std::has_value(x); }
 template < class C >
 bool operator>=(none_t, C const& x) noexcept
 { return ! ::std::has_value(x); }
 template < class C >
 bool operator>=(C const& x, none_t) noexcept { return true; }

}

Remark: The previous functions shall not participate in overload resolution unless C satisfies StrictWeaklyOrderedNullable.

Add conversions from none_t in [optional.object].

StrictWeaklyOrderedNullable comparison with none_t [nullable.nonetord_ops]

Optional Objects

template <class T> class optional {
// ...
// 20.6.3.1, constructors
constexpr optional(none_t) noexcept;

// 20.6.3.3, assignment
optional &operator=(none_t) noexcept;
};

Update [optional.object.ctor] adding before p 1.

constexpr optional(none_t) noexcept;

Update [optional.object.assign] adding before p 1.

optional<T>& operator=(none_t) noexcept;

Add Specialization of Nullable [optional.object.nullable].

20.6.x Nullable

optional<T> is a model of Nullable.

namespace nullable {
 template <class T>
 struct traits<optional<T>> {
 static constexpr
 nullopt_t none() noexcept { return nullopt; }
 template <class U>
 static constexpr
 bool has_value(optional<U> const& v) noexcept { return v.has_value(); }
 };
}

Add conversions from none_t in [any.object].

class any {
// ...
// 20.7.3.1, construction and destruction
constexpr any(none_t) noexcept;

// 20.7.3.2, assignments
any &operator=(none_t) noexcept;
};

Update [any.cons] adding before p 1.

constexpr any(none_t) noexcept;

Class Any

Effects: As if reset()

Postcondition: this->has_value() == false .

Update [any.assign] adding after p 12.

any<T>& operator=(none_t) noexcept;

Effects: As if reset()

Returns: *this

Postcondition: has_value() == false .

Add Specialization of Nullable [any.object.nullable].

20.6.x Nullable

any is a model of Nullable.

namespace nullable {
 template <>
 struct traits<any> {
 static constexpr
 none_t none() noexcept { return none_t{}; }
 static constexpr
 bool has_value(any const& v) noexcept { return v.has_value(); }
 };
}

x.y.z Nullable

variant<none_t, Ts...> is a models of Nullable.

namespace nullable {
 template <class ...Ts>
 struct traits<variant<none_t, Ts...>> {
 static constexpr
 none_t none() noexcept { return none_t{}; }
 template <class ...Us>
 static constexpr
 bool has_value(variant<none_t, Us...> const& v) noexcept { return v.index()>0; }
 };
}

unique_ptr<T, D> is a models of Nullable.

Variant Objects

Smart Pointers

namespace nullable {
 template <class T, class D>
 struct traits<unique_ptr<T, D> : traits_pointer_like {};
}

shared_ptr<T> is a models of Nullable.

namespace nullable {
 template <class T>
 struct traits<shared_ptr<T>> : traits_pointer_like {};
}

This proposal can be implemented as pure library extension, without any language support, in C++14. However the adoption of CWG
1518, CWG 1630 makes it simpler.

The authors would like to have an answer to the following points if there is any interest at all in this proposal:

Should we include none_t in <experimental/functional> or in a specific file?

We believe that a specific file is a better choice as this is needed in <experimental/optional> ,
<experimental/any> and <experimental/variant> . We propose <experimental/none> .

Should the mixed comparison with none_t be defined implicitly?

An alternative is to don't define them. In this case it could be better to remove the Nullable and StrictWeaklyOrderedNullable
requirements as the "reason d'être" of those requirements is to define these operations.

Should Nullable require in addition the expression n = {} to mean reset?

Should std::any be considered as Nullable? Note that std::any is not EqualityComparable. Should we relaxe the
Nullable requirements?

Should we add nullany_t type as the none_type_t<any> to avoid ambiguities?.

Should variant<none_t, Ts ...> be considered as Nullable?

1. expected<T,E> default constructor doesn't default to E()

2. expected<T,E> is not constructible from none_t . We could add it to mean initialize with E() . The problem is that
some error default to success.

3. none<expected<_t,E>() could return E() .
4. expected<T,E> doesn't compares to E .

We could define a PossiblyValued type of classes that is more general than Nullable and see Nullable as a special case of

Implementability

Open points

Why expected<T,E> cannot be considered Nullable

PossiblyValued types

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630

PossiblyValued when the not-a-value is a unit type. However the constraint on the default constructor could not be covered by
PossiblyValued if we would want expected<T,E> to be a PossiblyValued type.

In addition to the Nullable customization points, PossiblyValued could have associated operations as

deref_error

PossiblyValued will

not require a default constructor.
not be convertible from none_t .

In addition to the Nullable operation, PossiblyValued could have associated operations as

error_or ,
has_error ,
adapt_error and
resolve .

We could define a wide nullable::value(n) function on Nullables that obtain the value or throws an exception. If we want to
have a default implementation the function will need to throw a generic exception bad_access .

However to preserve the current behavior of std::optional::value() we will need to be able to consider this function as a
customization point also.

Pointers as std::optional provide the dereference operator. Adding the possibility to dereference a Nullable is something
natural.

Do we want to have an explicit nullable::deref(n) or use the more friendly *n ?

While we don't have yet an adopted proposal for Functor, we can define a default nullable::transform function for Nullable if
we are able to dereference the stored value.

While we don't have yet an adopted proposal for Applicative, we can define a default nullable::ap function for Nullable if we
are able to dereference the stored value.

While we don't have yet an adopted proposal for Monad, we can define a default nullable::bind function for Nullable if we are
able to dereference the stored value.

About nullable::value(n)

nullable::deref

Future work

Nullable as a Functor

Nullable as an Applicative Functor

Nullable as a Monad

Thanks to Tony Van Eerd and Titus Winters for helping me to improve globally the paper. Thanks to Agustín Bergé K-ballo for his
useful comments. Thanks to Ville Voutilainen for the pointers about explicit default construction.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the production of this proposal.

Added the following specific Nullable functions and types to see Nullables as Functors, Applicatives, Monads and SumType:

Added customization point nullable::deref .
Added nullable::none_type_t and nullable::value_type_t .
Added nullable::transform (Functor), nullable::ap (Applicative) and nullable::bind (Monad) P0650R0
when the Nullable is also TypeConstructible P0338R2.
Added nullable::visit (sumtype) [SUMTYPE].
Added nullable::value_or and nullable::apply_or .

Fixes some typos and take in account the feedback from Oulu meeting. Next follows the direction of the committee:

Add more examples in the documentation, including nesting of Nullables.
More explicit tests in the implementation.
Pointers should be Nullable.
has_value should be non-member.

Added a before/after comparison table.

Unfortunately initializing the nested Nullables with a nested none is not possible if the associated none-type are the same. This is
in line with optional<optional<T>> .

Other changes:

Consider having none_type<T> traits derived from the none<T>() function.
Consider adding is_nullable type trait and nullable::tag .
std::any cannot be considered as Nullable as far as we request EqualityComparable as we do for NullablePointer.

Add examples using Template argument deduction for constructors.

The 1st revision of [P0196R0] fixes some typos and takes in account the feedback from Jacksonville meeting. Next follows the
direction of the committee: the explicit approach none<optional> should be explored.

The approach taken by this revision is to provide both factories but instead of a literal we use a functions none() and
none<optional>() .

Acknowledgements

History

Revision 3

Revision 2

Revision 1

Revision 0

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0650r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf

This takes in account the feedback from Kona meeting P0032R0. The direction of the committee was:

Do we want none_t to be a separate paper?

 SF F N A SA
 11 1 3 0 0

Do we want the operator bool changes? No, instead a .something() member function (e.g. has_value) is
preferred for the 3 classes. This doesn't mean yet that we replace the existing explicit operator bool in optional .

Do we want emptiness checking to be consistent between any / optional ? Unanimous yes

 Provide operator bool for both Y: 6 N: 5
 Provide .something() Y: 17 N: 0
 Provide =={} Y: 0 N: 5
 Provide ==std::none Y: 5 N: 2
 something(any/optional) Y: 3 N: 8

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

P0032R0 Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

P0050R0 C++ generic match function

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0050r0.pdf

P0088R0 Variant: a type-safe union that is rarely invalid (v5)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf

P0091R0 Template parameter deduction for constructors (Rev. 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

P0338R2 C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf

P0343R1 - Meta-programming High-Order functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf

P0650R0 C++ Monadic interface

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0650r0.pdf

LWG 2510 Tag types should not be DefaultConstructible

http://cplusplus.github.io/LWG/lwg-active.html#2510

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0050r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0650r0.pdf
http://cplusplus.github.io/LWG/lwg-active.html#2510

CWG 1518 Explicit default constructors and copy-list-initialization

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518

CWG 1630 Multiple default constructor templates

http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630

SUM_TYPE Generic Sum Types

https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/sum_type

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630
https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/sum_type

