
P0190R4: Proposal for New

memory order consume Definition

Doc. No.: WG21/P0190R4
Date: 2017-02-07

Reply to: Paul E. McKenney, Michael Wong, Hans Boehm,
Jens Maurer, Jeffrey Yasskin, and JF Bastien

Email: paulmck@linux.vnet.ibm.com, michael@codeplay.com,
boehm@acm.org, Jens.Maurer@gmx.net,

jyasskin@google.com, and jfbastien@apple.com

Other contributors:
Torvald Riegel, Jeff Preshing, Clark Nelson, Olivier Giroux,

Lawrence Crowl, Alec Teal, David Howells, David Lang,
George Spelvin, Jeff Law, Joseph S. Myers, Linus Torvalds,

Mark Batty, Michael Matz, Peter Sewell, Peter Zijlstra,
Ramana Radhakrishnan, Richard Biener, Will Deacon, Faisal Vali,

Behan Webster, Tony Tye, Thomas Koeppe, Boqun Feng, ...

July 28, 2017

This document is a update to WG21/P0190R3, which is an update to
WG21/P0190R2, which is an update to WG21/P0190R1, in all cases based on
email discussions. WG21/P0190R1 is itself an update to WG21/P0190R0, based
on discussions at the Jacksonville meeting. That document was in turn a follow-
on to WG21/P0098R1, based on email discussion and on discussions at the 2015
meeting at Kona, which should be consulted for background on memory order

consume and for a number of alternatives to the definition in the standard [25].
The main purpose of memory order consume is to provide language support for
read-copy update (RCU) [5, 10, 12, 13, 14, 16, 18], which is heavily used in the
Linux kernel and which is seeing increasing use in user-level multi-threaded soft-
ware [1, 2, 4, 7, 8, 21, 24]. In addition, the intersection of RCU and transactional
memory is starting to garner significant attention [9, 11, 19, 20, 22].

However, this proposal has use cases beyond just RCU. For example, Java
final-field accesses provide a closely related dependency guarantee, and a similar
capability will likely be needed by any C++ garbage collector. Furthermore,
garbage collectors enable use cases that are quite similar to those of RCU [6]. In
addition, it is highly likely that additional concurrent code will rely on depen-

1

WG21/P0190R4 2

dency ordering, given that mainstream implementations provide dependency-
ordering guarantees via TSO or via hardware dependency ordering.

Please note that this document focuses only on the semantics of dependency
ordering. Information on the syntax of marked dependency chains may be
found in the working paper entitled “P0462R1: Marking memory order consume

Dependency Chains” which updates P0190R2 at http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2016/p0462r0.pdf.
This document presents a proposed solution to the problems with memory

order consume in the current C and C++ standards. Section 1 describes the
overall approach, Section 2 provides an informal definition, Section 3 provides
draft wording, Section 4 provides a series of litmus tests demonstrating depen-
dency chains, and finally Section 5 summarizes benefits, drawbacks, mitigations,
and open issues.

1 Approach

The purpose of memory order consume loads is to provide ordering guarantees
similar to those of memory order acquire loads, but, in contrast to the wording
in the current standard, only in cases where there is a robust dependency between
the memory order consume load and some subsequent operation. A robust de-
pendency is guaranteed to be preserved by both compilers and CPUs (other
than DEC Alpha) without the need for explicit memory-fence instructions, and
is a subset of the syntactic dependencies that earlier C++ standards [25] specify
for memory order consume. In contrast, the approach currently in the standard
requires the compiler to insert artificial dependencies or even memory-barrier
instructions so that even non-robust dependencies will be preserved.1

Another conspicuous change is that this proposal does not require dependen-
cies to be carried by integers, but instead only by pointers. Note that versions
v4.2 and later of the Linux kernel avoid carrying dependencies through inte-
ger variables [15]. At first glance, it might seem that restricted carrying of
dependencies through intptr t and uintptr t is needed to tag pointers, but
such tagging is not supported by the current C++ standard. This document
therefore completely prohibits carrying dependencies through integers.

In fact, the overall approach is to provide only those dependency-chain
preservation guarantees that are actually used in recent releases of the Linux ker-
nel. This has the beneficial effect of making a minimal implementation (exclud-
ing pointer-comparison intrinsics and diagnostics) trivial on systems other than
DEC Alpha: The implementation need only compile a memory order consume

to emit the same code that it would for a memory order relaxed load.2

1 Note to Linux kernel hackers: From here on out, the word “implementation” will be used
instead of “compiler”, as is the custom in the C++ Standards Committee.

2 DEC Alpha systems require that each memory order consume loads be followed by full
memory-barrier instructions if there are any loads that depend on the memory order consume

load. [3, 23]. Therefore, on DEC Alpha we recommend promoting memory order consume loads
to memory order acquire.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0462r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0462r0.pdf

WG21/P0190R4 3

2 Informal Dependency-Chain Definition

This section provides an informal description of the proposed solution. Sec-
tion 2.1 lists requirements and desiderata, and Section 2.2 provides the informal
description, examples, and discussion.

2.1 Requirements and Desiderata

There are a large number of constraints imposed on the problem of defining
memory order consume dependency chains.

Many of them stem from the desire to accommodate existing dependency-
chain practice, for example within the Linux kernel, but at the same time placing
little or (preferably) no burden on implementations. Although invention does
have its place, it should be noted that invention was exactly what resulted in
an unworkable definition of memory order consume in the C++11 standard.
Requirements stemming from Linux-kernel compatibility include:

1. Dependency chains must not depend solely on marking objects carrying
dependencies. Objects include local variables, function parameters, and
function return declarations.

2. Although it is perfectly acceptable for dependency chains to mark the load
heading the chain, depedency chains must not depend on marking accesses
or operations further down the chain.

3. Use of memory order consume loads should not result in unsolicited memory-
fence instructions. High-quality implementations would avoid emitting
such instructions, and not-so-high-quality implementations would at the
very least be able to issue a warning when such an instruction was emitted.

4. Dependency chains need only be carried through pointer values, however,
they must be carried to (not through) non-pointer values in a number of
cases.

The Linux kernel requires that dependencies be carried through bit manip-
ulations of pointer values, however, such bit manipulation invokes undefined
behavior. Bit manipulation of pointer values is useful for tagging and for some
types of memory allocators, and therefore might be worth standardizing in its
own right.

Compiler writers require that dependency chains not require explicit tracing
by implementations, such tracing being one of the major rocks on which the
C++11 definition of memory order consume foundered.

Although Linux-kernel compatibility requires that dependency chains not
depend solely on markings, it is entirely acceptable for such marking to provide
additional benefits such as higher-quality diagnostics and software-engineering
benefits. In fact, the Linux kernel already provides the rcu marking that
may optionally be applied to RCU-protected pointers, that is, pointers that are

WG21/P0190R4 4

1 p = rcu_dereference(gp);
2 *p = 5;

Figure 1: Extending Dependency Chain on Left-Hand Side

loaded using rcu dereference(), which is the Linux kernel’s counterpart to a
memory order consume load. One key hoped-for benefit of optional markings is
ease of formal verification.

2.2 Informal Definition

This informal description covers operations that extend dependency chains (Sec-
tion 2.2.1) and operations that terminate dependency chains (Section 2.2.2).

2.2.1 Extending Dependency Chains

The following categories of primitive operations extend dependency chains:3

1. Moving, copying, and casting.

2. Pointer offsets.

3. Dereferencing and address-of, including class-member access.

4. Miscellaneous operators.

Any other operation terminates a dependency chain. The operations that
extend dependency chains are covered in more detail below.

Moving, Copying, and Casting: Values that are part of a dependency
chain may be moved, copied, and casted (in some cases), and the dependency
chain will propagate to the result.

1. If any pointer value is part of a dependency chain, then using that value as
the left-hand side of an assignment expression extends the chain to cover
the assignment. This rule is exercised in the Linux kernel by stores into
fields making up an RCU protected data element. This is illustrated by
Figure 1.

2. If any pointer value is part of a dependency chain, then using that value
as the right-hand side of an assignment expression extends the chain to
cover both the assignment and the value returned by that assignment
statement. Line 20 of Figure 2 shows how this rule may be used to extend
a dependency chain into a local variable.

3 In case of operator overloading, the actual functions called must be analyzed in order to
determine their effects on dependency chains.

WG21/P0190R4 5

3. If any pointer value that is part of a dependency chain is stored to a
non-shared variable, then any value loaded by a later load from that same
variable by that same thread is also part of the dependency chain. Lines 20
and 24 of Figure 2 illustrate this rule, though this rule would apply even
if local variable lsp was a intptr t instead of a pointer. Note that the
job of determining whether or not a given variable is non-shared falls to
the developer, not the implementation. That said, a high-QoI implemen-
tation might choose to make this determination in order to issue helpful
diagnostic messages.

4. If a pointer value that is part of a dependency chain is stored to any
variable, then any pointer value loaded by a later load from that same
variable by that same thread is also part of the dependency chain. Lines 20
and 24 of Figure 2 illustrate this rule, though this rule would apply even
if local variable lsp was instead a shared variable. As before, determining
whether or not the store and load were carried out by the same thread
falls to the developer, not to the implementation.

5. If a pointer value is part of a dependency chain, then casting it (either
explicitly or implicitly) to any pointer type extends the chain to the re-
sult. Such casts are used heavily in the Linux kernel, for example, in
the list for each entry rcu() and list entry rcu() RCU-protected
list-traversal C-preprocessor macros.

6. If a pointer value is part of a dependency chain, then if that pointer is
used as a pointer-type argument of a function call, the dependency chain
extends to the corresponding parameter.

7. If a function returns a pointer value that is part of a dependency chain, the
dependency chain extends to the returned value in the calling function.

Pointer Offsets: If a given pointer is part of a dependency chain, then integral
offsets to that pointer are also part of that dependency chain.

1. If a pointer is part of a dependency chain, then adding an integral value
to that pointer extends the chain to the resulting value. This applies for
both positive and negative integers, and also to addition via the infix +

operator and via the postfix [] operator. Note that the addition must be
carried out on a pointer: Casting to an integral type and then carrying
out the addition is permitted to break the dependency chain. Therefore,
instead of casting to an integral type to carry out the addition, cast to a
pointer to char.4 Line 24 of Figure 2 illustrates this, given that the ->t

acts as a pointer offset prior to indirection.

4 Yes, some old systems had strange formats for character pointers, and this restriction
does exclude those systems from this nuance of dependency ordering. However, to the best of
my knowledge, all such systems were uniprocessors, so this is not a real problem.

WG21/P0190R4 6

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 void *ls_front(struct liststackhead *head)
15 {
16 void *data;
17 struct liststack *lsp;
18
19 rcu_read_lock();
20 lsp = rcu_dereference(head->first);
21 if (lsp == NULL)
22 data = NULL;
23 else
24 data = rcu_dereference(lsp->t);
25 rcu_read_unlock();
26 return data;
27 }

Figure 2: List-Based-Stack Whole-Program Approach, 1 of 2

2. If a pointer is part of a dependency chain, then subtracting an integer
from that pointer extends the chain to the resulting value. This applies
for both positive and negative integers. Again, casting to an integral type
and then carrying out the subtraction will break the dependency chain,
so instead cast to a pointer to char. The Linux-kernel container of()

macro illustrates this. This macro is used to find the beginning of a
structure given a pointer to a field within that same structure.

3. Note that class-member access operators (. and ->) can be thought of as
computing an offset as part of their execution.

Dereferencing and Address-Of: Dereferencing a pointer that is part of a
dependency chain extends the dependency chain to the result, but only when
the resulting value is a pointer type. Taking the address of a pointer that is part
of a dependency chain, and then dereferencing the resulting pointer, extends the
dependency chain to the result.

1. If a pointer is part of a dependency chain, then dereferencing it using the
prefix * operator extends the chain through the dereference operation.

2. If a pointer is part of a dependency chain, then dereferencing it using
the -> field-selection operator extends the chain to the field. Note that
the when the -> operator is followed by one or more . operators, these
latter operators are equivalent to adding a constant integer to the original
pointer. Line 24 of Figure 2 directly illustrates this rule.

WG21/P0190R4 7

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = (struct liststack *)malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 void *ls_pop(struct liststackhead *head)
37 {
38 struct liststack *lsp;
39 struct liststack *lsnp1;
40 struct liststack *lsnp2;
41 void *data;
42
43 rcu_read_lock();
44 lsnp2 = rcu_dereference(head->first);
45 do {
46 lsnp1 = lsnp2;
47 if (lsnp1 == NULL) {
48 rcu_read_unlock();
49 return NULL;
50 }
51 lsp = rcu_dereference(lsnp1->next);
52 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
53 } while (lsnp1 != lsnp2);
54 data = rcu_dereference(lsnp2->t);
55 rcu_read_unlock();
56 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
57 return data;
58 }

Figure 3: List-Based-Stack Whole-Program Approach, 2 of 2

WG21/P0190R4 8

1 struct bar {
2 struct bar *next;
3 int a;
4 int b;
5 };
6 struct bar *head = { &head, 1, 2 };
7
8 for (p = head->next; p; p = rcu_dereference(p->next)) {
9 foo += p->a;

10 if (p == &head)
11 break;
12 }
13 bar *= head->b;

Figure 4: Back-Propagation of Dependency-Chain Breakage Due to Compar-
isons

3. If a pointer is part of a dependency chain, then applying the unary &

address-of operator, optionally casting this address to a pointer type (per-
haps repeatedly to different pointer types, either explicitly or implicitly),
then applying the * dereference operator extends the chain to the result.
This is used by some of the Linux-kernel list-processing macros.

Miscellaneous Operations: The following operations also extend depen-
dency chains.

1. If a pointer is part of a dependency chain, and that pointer appears in
the operand of a ?: operator selected by the condition, then the chain
extends to the result. Please note that ?: does not extend chains from its
condition, only from its second or third argument.

2. If a pointer is part of a dependency chain, and that pointer appears in the
right-hand operand of a , operator, then the chain extends to the result.
Please note that the , operator does not extend chains from its left-hand
operand, only from its right-hand operand.

3. If a given operation extends a dependency chain, then so does its atomic
counterpart. For example, the rules applying to assignments also apply
to atomic loads and stores. It also applies to atomic exchange and atomic
compare and swap.

2.2.2 Terminating Dependency Chains

Even though all other operations terminate dependency chains, there are a few
that deserve special mention:

1. Equality comparisons.

2. Narrowing magnitude comparisons.

3. Narrowing arithmetic operations.

WG21/P0190R4 9

1 if (p > &foo)
2 do_something(p);
3 else if (p < &foo)
4 do_something_else(p);
5 else
6 do_something_nodep(p);

Figure 5: Inequality-Comparison Dependency-Chain Breakage

4. Narrowing bitwise operations.

5. Passing values between threads without using a memory order consume

load.

6. Undefined behavior.

7. Use of std::kill dependency.

Each of these is covered below.

Equality comparisons: If a pointer is part of a dependency chain, then a ==

or != comparison that compares equal to some other pointer, where that other
pointer is not part of any dependency chain, will cause any uses of the original
pointer to no longer be part of the dependency chain. This dependency-chain
breakage can back-propagate to earlier uses of the pointer, so that in Figure 4, if
the comparison on line 10 compares equal, then the access on line 9 is not part of
the dependency chain. This is admittedly a rather strange code fragment, and
besides, the Linux-kernel barrier() macro could prevent this if placed between
lines 9 and 10. Furthermore, the Linux kernel’s list macros avoid this situation
because the equal comparison terminates the loop.

So what if the implementation introduces an equality comparison? This
might happen when doing feedback-directed optimization, where the imple-
mentation might notice (for example) that a particularly statically allocated
structure was almost always the first element on a given list. The implemen-
tation might therefore introduce a specialization optimization, comparing the
addresses and generating code using the statically allocated structure on equals
comparison. On the one hand, in the cases where the Linux kernel adds a
statically allocated structure to an RCU-protected linked data structure, that
structure has been initialized at compile time, so that dependency ordering is
not required. On the other hand, this appears to be an extremely dubious opti-
mization for linked data structures: In a great many cases, the added overhead
of the comparison would overwhelm the benefits of generating code based on
the statically allocated structure.

High-quality implementations would therefore be expected to provide means
for disabling this sort of optimization, especially for pointers obtained from
the heap. After all, use of statically allocated structures in RCU-protected
lists could be quite useful during out-of-memory conditions, in which case the

WG21/P0190R4 10

specialization optimization would almost always reduce performance, which is
not what optmizations are supposed to be doing.

It is tempting to insist that implementations preserve dependency chains
even in the face of equality comparisons. However, such insistance eliminates the
possibility of a solution that does not require heavy use of explicit marking and
std::kill dependency(). To see this, recall that if a member of a dependency
chain is stored into any variable (be it on the stack, on the heap, wherever), and
if that same value is reloaded by that same thread, the dependency chain must
be preserved. Allowing successful equality comparisons to break dependency
chains is therefore essential to an unmarked solution to the dependency-ordering
problem.

Alternatively, an intrinsic could provide comparison, but avoid breaking de-
pendency chains. For example, a bool std::pointer cmp eq dep(T *pd, T* p)

intrinsic could compare the two pointers, but perserve dependencies carried by
pd even if they compare equal. For completeness, a bool std::pointer cmp

ne dep(T *pd, T* p) instrinic could also be provided for not-equal compar-
isons. Note that there is no way to compare two pointers carrying dependencies
and preserve the dependency for both. This is because there are currentely no
use cases requiring this, and requiring it would require the implementation to
be less efficient in its register usage.

Narrowing magnitude comparisons: A series of >, <, >=, or <= operators
that informs the implementation of the exact value of a pointer causes that
pointer to no longer be part of the dependency chain. See Figure 5 for an ex-
ample of this. On line 6 of this figure, the implementation knows that the value
of p is equal to &foo, so although there is dependency ordering to lines 2 and 4,
there is no dependency ordering to line 6. This dependency-chain breakage
can back-propagate, just as for equality comparisons. However, dependencies
are maintained for normal uses, for example, the use of comparisons for dead-
lock avoidance when acquiring locks contained in multiple RCU-protected data
elements.

As with equality comparison, an intrinsic could provide comparison, but
avoid breaking dependency chains. For example, bool std::pointer cmp gt

dep(T *pd, T* p), bool std::pointer cmp ge dep(T *pd, T* p), bool std::pointer

cmp lt dep(T *pd, T* p), and bool std::pointer cmp le dep(T *pd, T* p)

intrinsics could compare the two pointers, but perserve dependencies carried by
pd even if a series of comparisons allowed the implementation to deduce the
exact value of the pointer.

Narrowing arithmetic operations: If a pointer is part of a dependency
chain, and if the values added to or subtracted from that pointer cancel the
pointer value so as to allow the implementation to precisely determine the re-
sulting value, then the resulting value will not be part of any dependency chain.
For example, if p is part of a dependency chain, then ((char *)p-(uintptr

WG21/P0190R4 11

1 int *y;
2 int x[1];
3
4 int foo(void)
5 {
6 int *p;
7 int t;
8
9 p = atomic_load_explicit(&y, memory_order_consume);

10 t = p - x;
11 return *p;
12 }

Figure 6: Undefined Behavior Breaks Dependency Chain

t)p)+65536 will not be.5

Passing values between threads: If a value that is part of a dependency
chain is stored into a variable by one thread, and loaded from that same variable
by some other thread using either a non-atomic load or a memory order relaxed

load, then the dependency chain does not extend to the second thread. To
get this effect, the second thread would instead need to use a memory order

consume load. Note that in theory, this would extend the dependency chain
even if the corresponding store was a memory order relaxed store because the
required store-side ordering is provided by the dependency chain, however, in
practice the C++ standard does not guarantee ordering unless the store also has
release semantics. Alternatively, the store might be preceded by an invocation
of atomic thread fence() that provides release semantics.

Undefined behavior: If undefined behavior is invoked, then, consistent with
the notion of undefined behavior, there are no dependency-chain guarantees.

If a given pointer takes on only one value avoids undefined behavior, then
the dependency chain is broken in the same way as it would be in the case of an
equality comparison with that same value. This can result in counter-intuitive
dependency-chain breakage, as shown in Figure 6. Here, the pointer subtraction
on line 10 results in undefined behavior unless y references some element of x.
But since there is only one element of x, undefined behavior is avoided only if
y == &x[0], which means that the implementation knows the exact value of
y for any valid execution. The implementation is therefore within its rights to
replace line 11 with return x[0], thus breaking the dependency chain.

The moral of this story is “Don’t let singleton arrays anywhere near a value
that carries a dependency.”

kill dependency(): The result of calling std::kill dependency is never
part of any dependency chain. This operation can be used to suppress di-

5 That said, 5.7p4 of C++ and 6.5.6p8 of C both say that indexing outside of an object
is undefined behavior, so the loss of dependency ordering is likely the least of the problems
here.

WG21/P0190R4 12

agnostics that implementations might omit for likely misuses of dependency
ordering.

3 Draft Wording for Restricted Dependency Chains

This proposal recommends changes to 1.10p11 (Section 3.1), changes to 1.10p12
(Section 3.2), and, optionally, a new 29.9 (Section 3.3).

3.1 Wording for 1.10p11

1.10p11 of the most recent draft of the standard [25] is replaced with the fol-
lowing:

A carries a dependency to B, where A and B are evaluations, side
effects, memory loads, or memory stores, and A is of pointer type if:

1. A carries a dependency to X, and X carries a dependency to B,
then A carries a dependency to B.

2. An evaluation of an expression A carries a dependency to an
evaluation of an expression B, where B is either a prvalue of
pointer type or a glvalue, if

• B is a conditional expression (5.16 [expr.cond]) and A is
the second or third operand selected by the first expression
or

• B is a comma expression (5.19 [expr.comma]) and A is its
right operand.

3. An evaluation of a glvalue expression A carries a dependency
to an evaluation B if

• B is a class-member access (5.2.5 [expr.ref]) and A is its
object expression, or

• B is the result of an lvalue-to-rvalue conversion (4.1 [conv.lval])
and A is its glvalue operand,

• B is a unary & expression (5.3.1 [expr.unary.op]) and A is
its operand, or

• B is a assignment expression (5.18 [expr.ass]) and A is its
left operand. [Note: This also covers (p->a = 5) = 7

such that if p is in a dependency chain, then both assign-
ments will also be in that dependency chain. – end note]

4. An evaluation of an expression A carries a dependency to an
evaluation B and to the side effect of B (if any) if

• B is a new-expression (5.3.4 [expr.new]) and A is the invo-
cation of the allocation function, or

WG21/P0190R4 13

• B is an increment or decrement expression (5.2.6 [expr.post.incr]
and 5.3.2 [expr.pre.incr]) and A is its operand, or

• B is an additive expression (5.7 [expr.add]), A is one of its
operands, and the other operand is of integral type, or

• B is an indirection expression (5.3.1 [expr.unary.op]) and
A is its operand, or

• B is a standard conversion (Clause 4), a static cast (5.2.9
[expr.static.cast]), or a const cast (5.2.11 [expr.const.cast])
and A is the operand for the conversion [Note: An explicit
type conversion (5.2.3 [expr.type.conv], 5.4 [expr.cast]) is
analyzed in its decomposed form. A reinterpret cast

(5.2.7 [expr.dynamic.cast]) or a dynamic cast (5.2.10
[expr.reinterpret.cast]) break the dependency chain. – end
note], or

• B is an initialization and A is its initializer, or

• B is a simple assignment expression (5.18 [expr.ass]) and
A is its right operand.

5. An evaluation or side effect A carries a dependency to an evalu-
ation of an expression B of pointer type if A is sequenced before
B, B is an lvalue-to-rvalue conversion (4.1 [conv.lval]), and A
is either

• the side effect that stored the value read by B or

• the evaluation that computed the value read by B.

6. In the following list, a reference to a member function of an
atomic type T also applies to the corresponding non-member
function; see 29.6.5 [atomics.types.operations.req].

(a) Given an atomic type T, an evaluation A carries a depen-
dency to a side-effect or load or store C if

• C is the load resulting from invoking a T::load func-
tion and A is the argument for the function’s object
parameter, or

• C is the store resulting from invoking a T::store func-
tion and A is the argument for the function’s object
parameter, or

• C is the load or store resulting from a invoking an
atomic read-modify-write operation and A is the argu-
ment for the function’s object parameter.
[Note: this covers T::exchange, the compare-and-
exchange functions, and the T::fetch key functions
– end note]

(b) If T is an atomic pointer type, an evaluation A also carries
a dependency to a side effect or load or store C in the
list above if A is the argument for the function’s desired,
expected, or operand parameters.

WG21/P0190R4 14

(c) Given an atomic pointer type T, a side effect A carries a
dependency to an evaluation B if A is the side effect that
stored the value read by B and A is sequenced before B
and

• B is an invocation of a T::load function, or

• B is an invocation of an atomic read-modify-write op-
eration that returns the value stored by A.

[Note: Overloaded operators are treated as function calls (13.5
[over.oper]). – end note]

[Note: Implicit conversions and implicit invocations of functions are
considered separate evaluations for the purposes of this definition. –
end note]

[Note: “Carries a dependency to” is a subset of “is sequenced be-
fore”, and is similarly strictly intra-thread. – end note]

[Note: The above rules imply that dependency chains are carries
into and out of functions parameters and return values of pointer
type.

int * gp;

int * f(int * p) { return p; }

int g() {

int * p = atomic_load_explicit(gp, memory_order_consume);

*f(p) = 5;

}

In the preceding example, a dependency would be carried both into
the call to f() through its parameter p and back out through its re-
turn value, so that a dependency would be carried to the assignment
of the value 5. – end note]

If the implementation is able to exactly determine the value of a
pointer, for example, due to undefined-behavior analysis or due to a
series of comparison operators that enables exact determination of
its value, then no dependency is carried to that pointer.

[Note: To carry out comparisons without destroying the dependency
chain, use the std::pointer cmp eq dep(), std::pointer cmp ne

dep(), std::pointer cmp gt dep(), std::pointer cmp ge dep(),
std::pointer cmp lt dep(), or std::pointer cmp le dep() intrin-
sics if they are provided. – end note]

If A is the argument to std::kill dependency() and B its result,
no dependency is carried from A to B.

[Note: The intent of these rules is to enable implementations to
carry out their normal optimizations, while still permitting devel-
opers to rely on the common dependency-ordering use cases. – end
note]

WG21/P0190R4 15

[Note: Although the [[carries dependency]] attribute6 is no
longer needed to specify that a dependency chain exists, this at-
tribute can help the implementation provide higher-quality diag-
nostics. For example, doing an equality comparison to a non-NULL
pointer that is dereferenced could result in a warning diagnostic.
Such a warning would make the user aware that no dependency was
carried to that pointer. – end note]

Note that some adjustments will be needed for C:

1. Union-based type punning is allowed in C, so will need to be addressed.

There has been some discussion of a marking scheme that avoids loss of
dependency when the compiler exactly determines the value of an object. There
are some differences of opinion as to whether it is really needed, and, if it is,
exactly what form the corresponding wording would take.

3.2 Wording for 1.10p12

1.10p12 of the most recent draft is updated by inserting the phrase “of pointer
type”, resulting in the following:

An evaluation A is dependency-ordered before an evaluation B if

• A performs a release operation on an atomic object M of pointer
type, and, in another thread, B performs a consume operation
on M and reads a value written by any side effect in the release
sequence headed by A, or

• for some evaluation X, A is dependency-ordered before X and
X carries a dependency to B.

3.3 Optional Wording for 29.9

A new section 29.9 could add intrinsics for dependency-preserving comparisons:

extern "C" bool pointer cmp eq dep(T *pd, T *p) noexcept;
extern "C" bool pointer cmp ne dep(T *pd, T *p) noexcept;
extern "C" bool pointer cmp gt dep(T *pd, T *p) noexcept;
extern "C" bool pointer cmp ge dep(T *pd, T *p) noexcept;
extern "C" bool pointer cmp lt dep(T *pd, T *p) noexcept;
extern "C" bool pointer cmp le dep(T *pd, T *p) noexcept;

Effects: carries out the specified comparison of the two pointers
while preserving any dependencies carried through pd. Note that
dependencies carried through p may be lost.

An alternative approach would be to rely on variable marking to get the
same effect, thus dispensing with the above intrinsics.

6 Some spelling other than [[carries dependency]] might well be chosen at some point.

WG21/P0190R4 16

1 struct rcutest {
2 int a;
3 int b;
4 int c;
5 };
6
7 struct rcutest1 {
8 int a;
9 struct rcutest rt;

10 };
11
12 std::atomic<rcutest *> gp;
13 std::atomic<rcutest1 *> g1p;
14 std::atomic<int *> gip;
15 struct rcutest *gslp; /* Global scope, local usage. */
16 std::atomic<rcutest *> gsgp;
17
18 #define rcu_assign_pointer(p, v) \
19 atomic_store_explicit(&(p), (v), std::memory_order_release);
20 #define rcu_dereference(p) \
21 atomic_load_explicit(&(p), std::memory_order_consume);

Figure 7: Litmus-Test Definitions

4 Litmus Tests

Figure 7 shows some common definitions used by multiple litmus tests, each of
which is discussed in one of the following sections.

4.1 Simple Left-Hand-Side Dependency

Figure 8 shows a simple left-hand-side dependency. Dependency ordering guar-
antees that the assertion on line 8 never triggers.

4.2 Simple Right-Hand-Side Dependency

Figure 9 shows a simple right-hand-side dependency. Dependency ordering guar-
antees that the assertion on line 17 never triggers.

4.3 Local Storage For Dependency

Figure 9 also demonstrates that storing a pointer to a local variable preserves
the dependency chain. The pointer stored to local variable p on line 15 is part
of a dependency chain, and the dependency chain remains when it is reloaded
on line 17. Dependency ordering thus continues to guarantee that the assertion
on line 8 never triggers.

4.4 Non-Local Storage For Dependency

Figure 10 shows that storing to a non-local variable preserves a dependency if
this value is later reloaded by the same thread. Dependency ordering guarantees

WG21/P0190R4 17

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 assert(p->a != 43);
9 rcu_assign_pointer(gp, p);

10 }
11
12 void thread1(void)
13 {
14 struct rcutest *p;
15
16 p = rcu_dereference(gp);
17 if (p)
18 p->a = 43;
19 }

Figure 8: Litmus Test: Simple Left-Hand-Side Dependency

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest *p;
14
15 p = rcu_dereference(gp);
16 if (p)
17 assert(p->a == 42);
18 }

Figure 9: Litmus Test: Simple Right-Hand-Side Dependency

WG21/P0190R4 18

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest *p;
14
15 p = rcu_dereference(gp);
16 gslp = p;
17 p = gslp;
18 if (p)
19 assert(p->a == 42);
20 }

Figure 10: Litmus Test: Non-Local Storage For Dependency

that the assertion on line 19 never triggers, despite the store to and reload from
gslp.

Note that this pattern must be used with care because dependency ordering
is not guaranteed when the reload is done by some other thread, as shown by
the next litmus test.

4.5 Non-Local Storage and Reload Kills Dependency

Figure 11 shows that storing to a non-local variable, then reloading from that
variable within some other thread, kills the dependency. Dependency ordering
therefore does nothing to prevent the assertion on line 25 from triggering.

That said, in many implementations this assertion will trigger with very low
probability. One way to increase the probability of triggering is to arrange for
the memory allocated by line 5 to be pre-loaded into thread2()’s cache.

4.6 Casting For Dependency

Figure 12 shows that casting a pointer to another pointer type with compatible
layout preserves dependency ordering so that the assertion on line 19 never
triggers, despite the cast operation.

4.7 Casting to Non-Pointer Kills Dependency

Figure 13 shows that casting a pointer to a non-pointer type can kill the depen-
dency, despite the later cast back to a pointer type. The assertion on line 20
can therefore trigger.

WG21/P0190R4 19

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest *p;
14
15 p = rcu_dereference(gp);
16 atomic_store_explicit(&gsgp, p, memory_order_relaxed);
17 }
18
19 void thread2(void)
20 {
21 struct rcutest *p;
22
23 p = atomic_load_explicit(&gsgp, memory_order_relaxed);
24 if (p)
25 assert(p->a == 42);
26 }

Figure 11: Litmus Test: Non-Local Storage and Reload Kills Dependency

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest *p;
14 struct rcutest1 *q;
15
16 p = rcu_dereference(gp);
17 q = (struct rcutest1 *)p;
18 if (q)
19 assert(q->a == 42);
20 }

Figure 12: Litmus Test: Casting For Dependency

WG21/P0190R4 20

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest *p;
14 uintptr_t q;
15
16 p = rcu_dereference(gp);
17 q = reinterpret_cast<uintptr_t>(p);
18 p = (struct rcutest *)q;
19 if (p)
20 assert(p->a == 42);
21 }

Figure 13: Litmus Test: Casting to Non-Pointer Kills Dependency

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1_help(struct rcutest *q)
12 {
13 if (q)
14 assert(q->a == 42);
15 }
16
17 void thread1(void)
18 {
19 struct rcutest *p;
20
21 p = rcu_dereference(gp);
22 thread1_help(p);
23 }

Figure 14: Litmus Test: Function Argument Carries Dependency

WG21/P0190R4 21

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void thread1_help(struct rcutest *q [[carries_dependency]])
12 {
13 if (q)
14 assert(q->a == 42);
15 }
16
17 void thread1(void)
18 {
19 struct rcutest *p;
20
21 p = rcu_dereference(gp);
22 thread1_help(p);
23 }

Figure 15: Litmus Test: Function Argument Explicitly Carries Dependency

4.8 Function Argument Carries Dependency

Figure 14 shows that passing a pointer via a function argument preserves de-
pendency ordering so that the assertion on line 14 never triggers. As shown in
Figure 15, the [[carries dependency]] attribute could be used to document
the fact that the developer expects a dependency chain to pass into the function
via this parameter, and implementations might use these attributes to improve
diagnostics.

4.9 Function Return Carries Dependency

Figure 16 shows that returning a pointer from a function preserves depen-
dency ordering so that the assertion on line 22 never triggers. As shown in
Figure 17, the [[carries dependency]] attribute can again be used to make
the dependency-carrying explicit.

4.10 Array-Offset Dependency

Figure 18 shows how dependencies survive addition of integer offsets via array
indexing. Dependency ordering guarantees that the assertion on line 18 never
triggers.

4.11 Integer-Pointer Addition Dependency

Figure 19 shows how dependencies survive direct addition of integer offsets.
Dependency ordering guarantees that the assertion on line 18 never triggers.

WG21/P0190R4 22

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 struct rcutest *thread1_help(void)
12 {
13 return rcu_dereference(gp);
14 }
15
16 void thread1(void)
17 {
18 struct rcutest *p;
19
20 p = thread1_help();
21 if (p)
22 assert(p->a == 42);
23 }

Figure 16: Litmus Test: Function Return Carries Dependency

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 [[carries_dependency]] struct rcutest *thread1_help(void)
12 {
13 return rcu_dereference(gp);
14 }
15
16 void thread1(void)
17 {
18 struct rcutest *p;
19
20 p = thread1_help();
21 if (p)
22 assert(p->a == 42);
23 }

Figure 17: Litmus Test: Function Return Explicitly Carries Dependency

WG21/P0190R4 23

1 void thread0(void)
2 {
3 int *p;
4
5 p = (int *)malloc(4 * sizeof(*p));
6 assert(p);
7 p[0] = 1;
8 p[1] = 42;
9 rcu_assign_pointer(gip, p);

10 }
11
12 void thread1(void)
13 {
14 int *p;
15
16 p = rcu_dereference(gip);
17 if (p)
18 assert(p[p[0]] == 42);
19 }

Figure 18: Litmus Test: Array-Offset Dependency

1 void thread0(void)
2 {
3 int *p;
4
5 p = (int *)malloc(4 * sizeof(*p));
6 assert(p);
7 p[0] = 1;
8 p[1] = 42;
9 rcu_assign_pointer(gip, p);

10 }
11
12 void thread1(void)
13 {
14 int *p;
15
16 p = rcu_dereference(gip);
17 if (p)
18 assert(*(p + p[0]) == 42);
19 }

Figure 19: Litmus Test: Integer-Pointer Addition Dependency

WG21/P0190R4 24

1 void thread0(void)
2 {
3 int *p;
4
5 p = (int *)malloc(4 * sizeof(*p));
6 assert(p);
7 p[1] = -1;
8 p[0] = 42;
9 rcu_assign_pointer(gip, &p[1]);

10 }
11
12 void thread1(void)
13 {
14 int *p;
15
16 p = rcu_dereference(gip);
17 if (p)
18 assert(*(p + p[0]) == 42);
19 }

Figure 20: Litmus Test: Integer-Pointer Subtraction Dependency

1 void thread0(void)
2 {
3 struct rcutest1 *p;
4
5 p = (struct rcutest1 *)malloc(sizeof(*p));
6 assert(p);
7 p->rt.a = 42;
8 rcu_assign_pointer(g1p, p);
9 }

10
11 void thread1(void)
12 {
13 struct rcutest1 *p;
14
15 p = rcu_dereference(g1p);
16 if (p)
17 assert(p->rt.a == 42);
18 }

Figure 21: Litmus Test: Field-Selection Offset Dependency

4.12 Integer-Pointer Subtraction Dependency

Figure 20 shows how dependencies survive direct subtraction of integer offsets.
Dependency ordering guarantees that the assertion on line 18 never triggers.

4.13 Field-Selection Offset Dependency

Figure 21 shows that dependencies are carried through offsets due to the field-
selection operator. Dependency ordering guarantees that the assertion on line 17
never triggers.

WG21/P0190R4 25

1 void thread0(void)
2 {
3 int *p;
4
5 p = (int *)malloc(sizeof(*p));
6 assert(p);
7 *p = 42;
8 rcu_assign_pointer(gip, p);
9 }

10
11 void thread1(void)
12 {
13 int *p;
14
15 p = rcu_dereference(gip);
16 if (p)
17 assert(*p == 42);
18 }

Figure 22: Litmus Test: Direct Dereferencing Dependency

4.14 Direct Dereferencing Dependency

Figure 22 shows how dependencies direct dereferencing. Dependency ordering
guarantees that the assertion on line 17 never triggers.

4.15 Enclosing-Structure Location Dependency

Figure 23 shows that dependencies are carried through offsets used to locate an
enclosing structure, an idiom used by the container of() macro in the Linux
kernel. Dependency ordering guarantees that the assertion on line 22 never
triggers.

4.16 Conditional-Expression Dependency

Figure 24 shows a dependency carried through a conditional expression. De-
pendency ordering guarantees that the assertion on line 20 never triggers.

4.17 Comma-Expression Dependency

Figure 25 shows a dependency carried through the right-hand operand of a
comma expression Dependency ordering guarantees that the assertion on line 20
never triggers.

4.18 Equality Comparisons Kill Dependency

Figure 26 shows a dependency chain being killed by the equality comparison
on line 19. The implementation is within its rights to substitute i = rt.b

for line 20, which the implementation can hoist to precede line 19, even on a
strongly ordered system. This hoisting allows access to pre-initialization values
for rt.b which would be the constant 2 from the initializer on line 1. In this
case, the assertion on line 23 would trigger.

WG21/P0190R4 26

1 void thread0(void)
2 {
3 struct rcutest1 *p;
4
5 p = (struct rcutest1 *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, &p->rt);
9 }

10
11 void thread1(void)
12 {
13 char *cp;
14 struct rcutest *p;
15 struct rcutest1 *q;
16
17 p = rcu_dereference(gp);
18 if (p) {
19 cp = (char *)p;
20 cp -= (uintptr_t)&((struct rcutest1 *)NULL)->rt;
21 q = (struct rcutest1 *)cp;
22 assert(q->a == 42);
23 }
24 }

Figure 23: Litmus Test: Enclosing-Structure Location Dependency

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 p->b = 43;
9 rcu_assign_pointer(gp, p);

10 }
11
12 void thread1(void)
13 {
14 int i;
15 struct rcutest *p;
16
17 p = rcu_dereference(gp);
18 if (p) {
19 i = (random() & 0x1) ? p->a : p->b;
20 assert(i == 42 || i == 43);
21 }
22 }

Figure 24: Litmus Test: Conditional-Expression Dependency

WG21/P0190R4 27

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = (struct rcutest *)malloc(sizeof(*p));
6 assert(p);
7 p->a = 42;
8 p->b = 43;
9 rcu_assign_pointer(gp, p);

10 }
11
12 void thread1(void)
13 {
14 int i;
15 struct rcutest *p;
16 int junk;
17
18 p = rcu_dereference(gp);
19 if (p) {
20 i = (junk = 1, p->a);
21 assert(i == 42);
22 assert(junk == 1);
23 }
24 }

Figure 25: Litmus Test: Comma-Expression Dependency

1 struct rcutest rt = { 1, 2, 3 };
2
3 void thread0(void)
4 {
5 rt.a = -42;
6 rt.b = -43;
7 rt.c = -44;
8 rcu_assign_pointer(gp, &rt);
9 }

10
11 void thread1(void)
12 {
13 int i = -1;
14 int j = -1;
15 struct rcutest *p;
16
17 p = rcu_dereference(gp);
18 j = p->a;
19 if (p == &rt)
20 i = p->b; /* Dependency chain broken! */
21 else if (p)
22 i = p->c;
23 assert(i < 0);
24 assert(j < 0);
25 }

Figure 26: Litmus Test: Equality Comparisons Kill Dependency

WG21/P0190R4 28

1 struct rcutest rt = { 1, 2, 3 };
2
3 void thread0(void)
4 {
5 rt.a = -42;
6 rt.b = -43;
7 rt.c = -44;
8 rcu_assign_pointer(gp, &rt);
9 }

10
11 void thread1(void)
12 {
13 int i = -1;
14 int j = -1;
15 struct rcutest *p;
16
17 i = rt.b;
18 j = rt.a;
19 p = rcu_dereference(gp);
20 if (p && p != &rt) {
21 i = p->c;
22 j = p->a;
23 } else if (!p) {
24 i = j = -1;
25 }
26 assert(i < 0);
27 assert(j < 0);
28 }

Figure 27: Litmus Test: Equality Comparisons Kill Dependency, Optimized

Worse yet, the implemenation would be within its rights to transform the
code as shown in Figure 27. In this case, both assertions can clearly trigger. In
other words, an equality comparison can break dependencies in code preceding
the dependency.

4.19 Equality Comparisons Without Killing Dependency

Figure 28 shows a how pointer cmp eq dep() and friends provide a way of car-
rying out comparisons without killing dependency chains. With the dependency
chain preserved, the assertions on lines 23 and 24cannot trigger.

5 Benefits, Drawbacks, Mitigations, and Open
Issues

This section compares the proposal to the requirements and desiderata called
out in Section 2.1.

As required, dependency chains do not depend solely on marking objects car-
rying dependencies. Such objects may be marked, if desired, using [[carries

dependency]], which can improve diagnostics and perhaps also improve formal
verification.

The head of a dependency chain is marked with a memory order consume

load. No other markings are needed, although [[carries dependency]] may

WG21/P0190R4 29

1 struct rcutest rt = { 1, 2, 3 };
2
3 void thread0(void)
4 {
5 rt.a = -42;
6 rt.b = -43;
7 rt.c = -44;
8 rcu_assign_pointer(gp, &rt);
9 }

10
11 void thread1(void)
12 {
13 int i = -1;
14 int j = -1;
15 struct rcutest *p;
16
17 p = rcu_dereference(gp);
18 j = p->a;
19 if (pointer_cmp_eq_dep(p, &rt))
20 i = p->b;
21 else if (p)
22 i = p->c;
23 assert(i < 0);
24 assert(j < 0);
25 }

Figure 28: Litmus Test: Equality Comparisons Without Killing Dependency

be used as noted above. In addition, pointer cmp eq dep(), pointer cmp ne

dep(), pointer cmp gt dep(), pointer cmp ge dep(), pointer cmp lt dep(),
and pointer cmp le dep(), if provided, could be used to avoid dependency-
chain breakage that might otherwise occur due to value-narrowing comparisons.

Dependency chains have been defined to avoid the need for explicit memory-
barrier instructions on mainstream systems.

Dependencies need be carried only through pointers and to non-pointers.
Implementations need not trace dependency chains. Again, [[carries

dependency]] may be used to permit improved diagnostics, but without the
need to trace dependency chains.

It is important to note that this proposal does not address the need to tag
pointers via low-order bits. Such tagging is required for a number of algorithms
for concurrency and for memory allocation. Should a future proposal to define
pointer-bit tagging be accepted, that proposal should accommodate carrying
dependencies through tagged pointers.

In summary, this proposal provides the features needed by most existing
RCU-related practice without placing undue burdens on the implementations.

However, there are some outstanding issues:

1. Formal verification very likely requires full annotation. However, requir-
ing full annotation conflicts with both developer preferences and existing
practice. This document therefore allows developers to omit annotations,
but developers wishing to make full use of formal verification tools will
need to add them.

WG21/P0190R4 30

2. The current definition of memory order consume is defined in terms of the
compiler’s ability to determine the exact value of a given pointer. It is not
yet clear how to word this, or, for that matter, whether any such definition
is appropriate for the standard.7

3. It is generally agreed that some form of annotation should be made avail-
able, but the exact form is still subject to debate. This document uses the
[[carries dependency]] annotation as a placeholder.

These issues will require some discussion.

References

[1] Arbel, M., and Morrison, A. Predicate rcu: An rcu for scalable con-
current updates. SIGPLAN Not. 50, 8 (Jan. 2015), 21–30.

[2] Ash, M. Concurrent memory deallocation in the objective-c runtime.
mikeash.com: just this guy, you know?, May 2015.

[3] Compaq Computer Corporation. Shared memory, threads, interpro-
cess communication. Available: http://h71000.www7.hp.com/wizard/

wiz_2637.html, August 2001.

[4] Desnoyers, M. [RFC git tree] userspace RCU (urcu) for Linux. http:

//liburcu.org, February 2009.

[5] Desnoyers, M., McKenney, P. E., Stern, A., Dagenais, M. R.,
and Walpole, J. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems 23 (2012), 375–382.

[6] Kung, H. T., and Lehman, P. Concurrent manipulation of binary search
trees. ACM Transactions on Database Systems 5, 3 (September 1980), 354–
382.

[7] Liu, R., Zhang, H., and Chen, H. Scalable read-mostly synchroniza-
tion using passive reader-writer locks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14) (Philadelphia, PA, June 2014), USENIX
Association, pp. 219–230.

[8] Liu, Y., Luchangco, V., and Spear, M. Mindicators: A scalable
approach to quiescence. In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems (Washington, DC, USA,
2013), ICDCS ’13, IEEE Computer Society, pp. 206–215.

[9] Matveev, A., Shavit, N., Felber, P., and Marlier, P. Read-log-
update: A lightweight synchronization mechanism for concurrent program-
ming. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 168–183.

7 That said, current implementations do work in exactly this manner.

http://h71000.www7.hp.com/wizard/wiz_2637.html
http://h71000.www7.hp.com/wizard/wiz_2637.html
http://liburcu.org
http://liburcu.org

WG21/P0190R4 31

[10] McKenney, P. E. What is RCU? part 2: Usage. Available: http:

//lwn.net/Articles/263130/ [Viewed January 4, 2008], January 2008.

[11] McKenney, P. E. Transactional memory everywhere? http://paulmck.

livejournal.com/tag/transactional%20memory%20everywhere,
September 2009.

[12] McKenney, P. E. The RCU API, 2010 edition. http://lwn.net/

Articles/418853/, December 2010.

[13] McKenney, P. E. Is Parallel Programming Hard, And, If So, What Can
You Do About It? kernel.org, Corvallis, OR, USA, 2012.

[14] McKenney, P. E. Structured deferral: synchronization via procrastina-
tion. Commun. ACM 56, 7 (July 2013), 40–49.

[15] McKenney, P. E. [PATCH tip/core/rcu 1/4] mce: Stop us-
ing array-index-based RCU primitives. [PATCHtip/core/rcu1/4]mce:

Stopusingarray-index-basedRCUprimitives, May 2015.

[16] McKenney, P. E., Purcell, C., Algae, Schumin, B., Cornelius,
G., Qwertyus, Conway, N., Sbw, Blainster, Rufus, C., Zoicon5,
Anome, and Eisen, H. Read-copy update. http://en.wikipedia.org/
wiki/Read-copy-update, July 2006.

[17] McKenney, P. E., Riegel, T., Preshin, J., Boehm, H., Nelson,
C., Giroux, O., and Crowl, L. Towards implementation and use
of memory order consume. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2015/p0098r0.pdf, September 2015.

[18] McKenney, P. E., and Walpole, J. What is RCU, fundamentally?
Available: http://lwn.net/Articles/262464/ [Viewed December 27,
2007], December 2007.

[19] Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and
Witchel, E. Operating systems transactions. In SOSP ’09: Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles (New
York, NY, USA, 2009), ACM, pp. 161–176.

[20] Porter, D. E., and Witchel, E. Lessons from large transac-
tional systems. Personal communication ¡20071214220521.GA5721@olive-
green.cs.utexas.edu¿, December 2007.

[21] Ramalhete, P., and Correia, A. Poor man’s rcu. https:

//github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/

poormanurcu-2015.pdf, August 2015.

[22] Rossbach, C. J., Hofmann, O. S., Porter, D. E., Ramadan, H. E.,
Bhandari, A., and Witchel, E. TxLinux: Using and managing
hardware transactional memory in an operating system. In SOSP’07:

http://lwn.net/Articles/263130/
http://lwn.net/Articles/263130/
http://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
http://paulmck.livejournal.com/tag/transactional%20memory%20everywhere
http://lwn.net/Articles/418853/
http://lwn.net/Articles/418853/
[PATCH tip/core/rcu 1/4] mce: Stop using array-index-based RCU primitives
[PATCH tip/core/rcu 1/4] mce: Stop using array-index-based RCU primitives
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0098r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0098r0.pdf
http://lwn.net/Articles/262464/
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/poormanurcu-2015.pdf

WG21/P0190R4 32

Twenty-First ACM Symposium on Operating Systems Principles (Octo-
ber 2007), ACM SIGOPS. Available: http://www.sosp2007.org/papers/
sosp056-rossbach.pdf [Viewed October 21, 2007].

[23] Sites, R. L., and Witek, R. T. Alpha AXP Architecture, second ed.
Digital Press, 1995.

[24] Sivaramakrishnan, K., Ziarek, L., and Jagannathan, S. Eliminat-
ing read barriers through procrastination and cleanliness. In Proceedings
of the 2012 International Symposium on Memory Management (New York,
NY, USA, 2012), ISMM ’12, ACM, pp. 49–60.

[25] Smith, R. Working draft, standard for programming language
C++. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/
n4527.pdf, May 2015.

Change Log

This paper was first posted informally in January of 2016. Revisions to this
initial document are as follows:

• Add litmus tests in Section 4 as requested by Michael Wong. (January 8,
2016.)

• Apply feedback from Hans, including noting non-RCU use cases in the
preamble starting on the first page, more clearly distinguishing this pro-
posal from the wording in the current standard throughout, providing
better justification for equality comparisons breaking dependency chains,
adding Hans’s litmus test showing how avoiding undefined behavior can
break dependency chains in a manner similar to equality comparisons,
and marking as optional the wording for 29.9 (intrinsics for dependency-
preserving equality comparison). (January 12, 2016.)

• Apply wording feedback from Jens Maurer. (January 13-22, 2016.)

• Apply feedback from Michael Wong, especially on litmus tests. (January
25, 2016 through February 5, 2016.)

• Highlight outstanding issues as discussed with Hans Boehm. (February
10, 2016.)

• Fix litmus tests issues reported by Michael Wong. (February 10, 2016.)

This version was mailed out as P0190R0 and presented at Jacksonville,
Florida, USA. It was further revised:

• Fix litmus tests issues reported by Faisal Vali. (February 29, 2016.)

http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

WG21/P0190R4 33

• Remove references to self-modifying code, as this is outside the standard,
as noted by JF Bastien. (March 1, 2016.)

• Add note explicitly stating that overloaded operators are to be handled
as function calls, as suggested by JF Bastien.

• Update wording based on detailed review with Jens Maurer and Jeffrey
Yasskin. (March 4, 2016.)

This version was mailed out as P0190R1.

• Fix litmus-test issues reported by Michael Wong. (May 23, 2016).

• Update Michael Wong’s contact information. (May 25, 2016).

This version was mailed out as P0190R2.

• Update Michael Wong’s email address again. (May 27, 2016).

• Update to more accurately characterize DEC Alpha properties, per feed-
back from Linus Torvalds. (November 16, 2016).

• Add reference to P0462R1 for marked dependency chains.

This version was mailed out as P0190R3.

• Remove a stray backquote. (May 4, 2017.)

• Apply Will Deacon feedback. (May 4, 2017.)

• Globally indicate that A is of pointer type throughout wording. (July 14,
2017.)

This version was mailed out as P0190R4.

	1 Approach
	2 Informal Dependency-Chain Definition
	2.1 Requirements and Desiderata
	2.2 Informal Definition
	2.2.1 Extending Dependency Chains
	2.2.2 Terminating Dependency Chains

	3 Draft Wording for Restricted Dependency Chains
	3.1 Wording for 1.10p11
	3.2 Wording for 1.10p12
	3.3 Optional Wording for 29.9

	4 Litmus Tests
	4.1 Simple Left-Hand-Side Dependency
	4.2 Simple Right-Hand-Side Dependency
	4.3 Local Storage For Dependency
	4.4 Non-Local Storage For Dependency
	4.5 Non-Local Storage and Reload Kills Dependency
	4.6 Casting For Dependency
	4.7 Casting to Non-Pointer Kills Dependency
	4.8 Function Argument Carries Dependency
	4.9 Function Return Carries Dependency
	4.10 Array-Offset Dependency
	4.11 Integer-Pointer Addition Dependency
	4.12 Integer-Pointer Subtraction Dependency
	4.13 Field-Selection Offset Dependency
	4.14 Direct Dereferencing Dependency
	4.15 Enclosing-Structure Location Dependency
	4.16 Conditional-Expression Dependency
	4.17 Comma-Expression Dependency
	4.18 Equality Comparisons Kill Dependency
	4.19 Equality Comparisons Without Killing Dependency

	5 Benefits, Drawbacks, Mitigations, and Open Issues

