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Abstract 
This paper describes a design of a powerful, minimal facility for specifying contracts (preconditions, 
postconditions, and assertions) for C++. It covers a wide range of needs and is implementable using 
conventional techniques. It is a refinement of practical experience with several systems for specifying 
requirements for code. 

The design has been influenced by numerous papers (see the reference list) and discussions. It is 
essentially what J. Daniel Garcia presented at the February 2016 Jacksonville WG21 meeting. 

This paper describes the contract design primarily from a user’s point of view with a few hints of 
potential implementation techniques. The proposed standards wording is in a companion paper (TBD). 

1. Introduction 
Specifying contracts (in particular, preconditions, postconditions, and assertions) has proven a valuable 
tool for improving software quality. The literature and industrial practice are littered with contract 
systems, demonstrating their utility. C++ needs a standard to allow contracts to be used across 
organizations; in particular, to allow libraries using contracts to be widely used. 

The design presented here is the result of joint work by many (see the author list) and relies on inputs 
from many more (see the reference list). It is complete and minimal in the sense that it includes all 
facilities that the authors consider essential, but leaves out many that we consider merely useful or 
potentially useful. We can always add features later if need be. 

In this paper, we aim for clarity, picking one solution to each “bike shed issue”, such as “what is the 
word used to denote the requirements for a set of argument values?” See the “Naming” section for a 
very brief discussion of alternatives. 

A programmer can express 
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• A precondition: a predicate that is supposed to hold upon entry into a function – placed outside 
a function body. This expresses a function’s expectation of its arguments and/or the state of 
objects used by the function. 

• An assertion: a predicate that is supposed to hold at its point in the computation – placed 
anywhere a statement can appear in a function body. 

• A postcondition: a predicate that is supposed to hold upon exit from the function – placed 
outside a function body. This expresses what the function is supposed to ensure for the return 
value and/or the state of objects used by the function. 

void push(queue & q) 
[[ expects: !q. full () ]]  // there must be room for another element 
[[ ensures: !q.empty() ]] // q can’t be empty after adding an element 

{ 
// ... 
[[ assert: q.is_ok() ]];  // q’s invariant is (re)established at this point 

} 
 
Preconditions (“expects”), postconditions (“ensures”), and assertions (“assert”) are collectively called 
contracts. A contract has no observable effect in a correct program (i.e., a program without contract 
violations) beyond performance differences. 
 
A contract is checked (or not) at run time depending on a build system setting. The default action upon a 
contract violation is program termination. 
 
We use the attribute syntax to indicate that contracts are not always checked at run-time (see section 3) 
and that they are not part of a function’s type. Support for contract attributes is not optional in the 
sense that they can be ignored by a conforming compiler; contracts are enforced as described in 
sections 2 and 3.  
 
Preconditions and postconditions are expressed outside the function body, so they cannot access local 
variables in the function (except the arguments) or private or protected members of the class of a 
member function. They operate on the external view of a function; they are considered part of a 
function’s interface. Assertions are internal to the body of a function and can access everything the 
function can access from their point in the function; they are considered part of the implementation of a 
function. 
 

class X { 
public: 
 void f(int n) 
  [[ expects: n<m ]]   // error: precondition cannot access private member m 
 { 
  [[ assert: n<m ]];   // OK: we are inside a member function 
  // … 
 } 
private: 
 int m; 
}; 
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No contract expression is permitted to modify any object, but this constraint is not required to be 
checked by the compiler. 
 
A contract on a constexpr function cannot refer to non-local variables. It can refer to a non-local 
constant with a value known at compile time: 
 

int min = -27; 
constexpr int max = 27; 
 
constexpr int nonsense(int x) 

[[expects: min<=x]]  // error 
[[expects: x<max]] // OK 

 { 
  // … 
 } 
 
 
We consider preconditions, postconditions, and assertions essential (that is, in the union of what was 
deemed essential by the participants in the discussions). Further elaboration may be desirable (e.g., 
class invariants and loop invariants), but more can be added later if widespread need is demonstrated. 

2. Enforcement 
By default, a contract violation causes program termination. However, a programmer can control what 
is checked and also what is done in response to a violation (section 3). 

There are three “levels” of contracts: 

• Default: the default; the cost of run-time checking is assumed to be small (or at least not 
expensive) compared to the cost of executing the function 

• Audit: a check that is more comprehensive than the default; the cost of run-time checking is 
assumed to be large (or at least significant) compared to executing the function 

• Axiom: a formal comment for humans and static analyzers; no run-time cost because the 
predicate is not evaluated at run time 

For example: 

[[expects: … ]]  // implicitly default 

[[expects default: … ]]  // explicitly default 

[[expects axiom: … ]] // no run-time checking 

[[expects audit: … ]] // this check is expensive  
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Why three levels? We could have more (for example, add a min level for checks that are even cheaper 
than the default for contracts where run-time checking is considered essential even in extremely 
performance sensitive code) or less (do we really need axiom?). These three levels are the union of 
what people consider essential. More levels would simply be “nice or convenient”. We can add more if a 
widespread need is demonstrated. The axiom level was deemed essential by people wanting more 
precise comments and/or using contract systems augmented by static analysis. 

Note that the predicate of an axiom is not evaluated and may contain calls to undefined functions. For 
example: 

template<class InputIterator> 
Iter algo(InputIterator fst, InputIterator lst) 
   [[expects axiom: fst!=lst && reachable(fst,lst)]] 
{ 
   // ... 
} 

 
Here, the contract is used to state that [fst:lst) is a sequence, rather than two unrelated values. We 
chose InputIterator because that makes reachable(fst,lst) impossible to execute as a side-effect-free 
contract predicate. 

3. Handling contract violations 
A compilation has a buid level. If the build level is 

• off, no contracts are checked 
• default, default contracts are checked 
• audit, default and audit contracts are checked 

Exactly how the build level is set is implementation specific (and not specified by the standard). You 
could think of it as a compiler option, but a build system will most likely ensure consistent use of such an 
option. By default, the build level is default. 

A compilation has a violation handler. If a contract violation is detected, the violation handler is invoked. 

A user can set a violation handler. Exactly how the violation handler is set is implementation specific 
(and not specified by the standard). You could think of it as a compiler option, but a build system will 
most likely ensure consistent use of such an option 

The type of the violation handler is  

void(const violation_info&) 

where a violation_info has at least the following members 

• int line_number;  // -1 means unknown 
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• const char* file_name;  // nullptr means unknown 
• const char* function_name; // nullptr means unknown 
• const char* comment;  // the text of the contract 

So [[ assert default: x<0 ]] might pass { 10234, “foo.cpp”, “foo”, “assert default: x<0”}. 

By default, the violation handler immediately invokes std::abort. 

Setting a violation handler can be a very sensitive issue so some implementations will put severe 
restrictions on the handlers that can be installed and how. For example, a violation handler could be 
used to inject a Trojan horse into a system, so security-sensitive systems will prevent that (e.g., by 
allowing installation of approved violation handlers only. 

There are programs that need to resume computation after executing a violations handler. This seems 
counterintuitive (“continue after a precondition violation!!!?”), but there are two important use cases: 

• Gradual introduction of contracts:  Experience shows that once you start introducing contracts 
into a large old code base, violations are found in “correctly working code.” In other words, 
contracts are violated in ways that did not cause crashes for the actual use of the code for the 
actual data used. There are examples where the number of such “currently harmless violations” 
is massive. The way to cope is to install a violation handler that logs the problem and continues. 
This allows gradual adoption. 

• Test harnesses: Contracts are code, so they can contain bugs. To test contracts, we need to 
execute examples of violations. A convenient way of organizing such a test suite is to have a 
violation handler throw an exception and have the main testing loop catch exceptions and 
proceed running the next test. 

A compilation has a continuation option, set to on or off. If the continuation option is set to on, the 
execution will resume after the violation handler exits. 

Exactly how the continuation option is set is implementation specific (and not specified by the 
standard). You could think of it as a compiler option, but a build system will most likely ensure 
consistent use of such an option. By default, the continuation option is off. 

Note that continuing after a violation is technically undefined behavior. For example, after [[assert: 
p!=nullptr]] a compiler may assume that p is not the nullptr and may proceed to eliminate subsequent 
p!=nullptr tests. This is not hypothetical: modern aggressive optimizers perform such elisions. 
Fortunately, all optimizers that do such optimizations also have an option for suppressing them for 
critical code, such as kernel code. Setting the continuation option will imply the use of such 
(implementation specific) compiler/optimizer options. 

To sum up, a build system will offer three implementation specific settings: 

• Build level (to be matched against contracts’ checking levels) 
• Violation handler (to be invoke in case of contract violation) 
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• Continuation option (to indicate whether a computation can be resumed after a return from a 
violation handler) 

The details of these options are beyond the C++ standard. 

There is (deliberately) no way of setting these options in the source code. If there were, complexity and 
opportunities for errors and security violations would arise. 

You cannot exit a noexcept function by throwing an exception from a violation handler; attempting to 
do so causes termination exactly as if an exception had been thrown from inside the noexcept function. 
For example: 

 int f(int x) noexcept [[expects: 0<x]]; 

 int y = f(-1); // terminate 

This is true even if a violation handler that throws has been installed. That is, you cannot get to a catch-
clause outside a noexcept function by throwing from a violation handler. 

4. Declarations and contracts 
A contract can be placed on declarations of functions and pointers to functions. This includes 
declarations of virtual functions, template functions, and lambdas. 

The contracts every declaration of a function must be (ODR) identical. For example: 

struct B { 
 virtual void f(int x);  
 virtual void g(int x) [[expects: x<0]]; 
 virtual void h(int x) [[expects: x>0]];  
 virtual void k(int x) [[expects: 0<=x]]; 
}; 
 
Struct D : B { 
 void f(int x) override [[expects: x<0]]; // error: no contract on B::f 
 void g(int x) override [[expects: x<1]]; // error: contract differ from B::g’s 
 void h(int x) override;   // error: there  was a contract on B::h 
 void k(int x) override [[expects: 0<=x]]; // OK: identical contracts 
}; 

 
This rule ensures that for a given function the same contract is enforced for every invocation. 

Obviously, we could relax this rule. For example, we could allow a contract to be on only one declaration 
(and check the contract only if that declaration was used for a class or for all calls) or allow weakening 
preconditions in an overriding function. We decided that the added complexity wasn’t worth it. If 
serious need is demonstrated, we can relax this rule later. 



May 2016 A Contract Design P0380 

7 
 

Note that you can achieve the effect of a stronger contract on a virtual function than on its overrider by 
using an assertion: 

class A { 
// ... 
void f () [[expects: p1()]] 
{ 

[[assert: p2()]]; 
// ... 

} 
}; 
 
class B : public A { 

// ... 
void f () [[expects: p1()]]; 

}; 
 
This requires a bit of foresight (to use a suitably weak precondition). 
 
Another example: 

void f(int x) [[expects: x>0]]; 
void (*pf) ( int ) = &f;   // error: would remove contract 
void (*pf) ( int ) [[expects: x>0]] = &f; // OK  
void (*pf) ( int ) [[expects: x>=0] = &f; // error: different contract 

 
void g(int x) ; 
void (*pg)(int ) [[expects: x>0]] = &g; // error: would add contract 

 
Enforcing identical contracts for pointers to functions might prove to be overly constraining, so this 
design choice may have to be reviewed in light of future experience. It is, however, the simplest design 
that doesn’t imply the possibility of an undetected contract violation. 

A declaration can have several contracts. For example: 

template<RandomAccessIterator Iter> 
void bsearch(Iter p, Iter q) 
 [[expects default: p<=q]] 
 [[expects audit: is_sorted(p,q)]] 
{ 
 // … 
} 
 

Importantly, a compiler may not use information from a contract that is not checked at run time to 
suppress run-time checks of otherwise checked contracts. In this case, a compiler “understanding” 
is_sorted(p,q) may not use than knowledge to suppress the (weaker, but cheaper)  p<=q check when 
the checking level is default. The programmer asked for that check and should get it. 
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Checking that a sequence is sorted is typically much more expensive (O(N)) than doing a binary search 
(O(log N)). This kind of check is often better done using an assert: 

 
template<RandomAccessIterator Iter> 
void bsearch(Iter p, Iter q) 
 [[expects: p<=q]] 
{ 
 If (p==q) return; 

Iter mid; 
// … 

 [[assert: *mid<=*(mid+1)]]; // where we pick a new mid 
 // … 
} 

5. Notation and naming 
As usual, naming is difficult and potentially controversial. In the sections above we have used our 
preferred choices. This section very briefly outlines alternatives. 

Contract names: 

• Precondition: expects, precondition, assumes, pre, expect, require 
• Postcondition: ensures, postcondition, post, commitment, promise, ensure 
• Assertion: assert, assertion, invariant 

People will have to learn what the exact meaning is independently of what names we use, so “more 
natural” or “more informative” names (according some individual’s experience) could even be 
misleading (“false friends”). We consider “perfect naming” impossible. 

Checking level names: 

• No runtime checking: axiom, not-runtime, static, compile time, comment, annotation 
• Cheap/standard checking: default, cheap, normal 
• Expensive/comprehensive checking: audit, expensive, max, comprehensive, exhaustive 

We choose something short and again we assume that people will have to learn the exact meaning 
whatever names we use, so that “better names” could become “false friends” when people more often 
thought they understood them without looking up their meaning. 

We considered having fewer alternatives and more alternatives. We might have eliminated axiom, but 
there were strong support (insistence) for that from people who wanted more formal comments and for 
people with contract systems relying of static analysis support. We might have added min (or critical) 
for run-time checking that was cheaper than default and/or medium for run-time checking that was 
more expensive than default and cheaper than audit, but every new checking level opens opportunities 
for confusion (incompatible use in different places) and we can always add a level later if need be. 
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We use the [[expects: … ]] notation rather than [[expects(…)]]. The latter became quite tedious to write, 
is harder to read, and expects, ensures, and assert really are not functions. When combined with 
checking levels, it became uglier still. We know that aesthetics is not objective, but this is our consensus. 
For assert, [[assert(p)]] would clash with the assert macro. 

We consider the kind of contract the most significant part so we place the checking level after the kind 
of contract: 

  [[assert audit: x.ok()&&y<99]] 

We could equally well have chosen the opposite order:  

  [[audit assert: x.ok()&&y<99]] 

We could even had left the order unspecified, but that would have left opportunities for gratuitous style 
differences and confusion. 

It is not uncommon to want to refer to the return value in a postcondition. For example: 

int area(int h, int w) [[ensures: 0<=return_value]] // How do we say something like this? 
{ 
 // … 
} 

 
What would be proper notation for return_value? Suggestions include return, the function name, 
return_value, `return, -> ret, and various other special-purpose syntactic constructs. Consider: 
 

• We don’t want to have to write a whole new expression parser for postconditions (and the 
reference to the returned value will occur in expressions, potentially deep in complicated 
expressions) 

• We don’t want to use a common identifier that might clash with the user’s choice of identifiers 
• The function’s name can be use with its ordinary meaning (e.g., in a recursive call) 

 
We were tempted to leave out the ability to refer to the returned value, but the need is common in 
contract systems and some consider it essential. 
 
To refer to the return value, we introduce a name for it after ensures. For example: 
 

int area(int h, int w) [[ensures ret_val: 0<=ret_val]] 
{ 
 // … 
} 

 
If we refer to an argument in a postcondition, the value used (if the postcondition is evaluated) is the 
value of the argument at the point of return. For example: 

void incr(int&r) 
 [[expects: 0<r]] 
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 [[ensures: 1<r]] 
{ 
 ++r; 
} 
 

There is no way of referring to the old/original value of an argument in a postcondition. A suitable 
notation for that can be added later if a widespread need is demonstrated. Naturally, we know of 
examples where this would be useful, but deemed it “not essential for a minimal facility.” For now, we 
can always compensate by using an assert; for example: 

void incr(int&r) 
 [[expects: 0<r]] 
{ 
 int old = r; 

++r; 
 [[assert: r==old+1]]; // “faking” a postcondition 
} 
 

Changing the value of an argument passed by value and used in a postcondition is ill-formed. For 
example: 

int* find(int* first, int* last, int x) 
 [[ensures: first<=last]] 
{ 
 while (first!=last && *first!=x) 

++first;    // error 
return *first; 

} 
 

Note that we have to use a semicolon after [[assert: …]] in function bodies. That semicolon is logically 
redundant, but is currently required by the grammar and helps “smart” editors indent properly. 
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