
Document number: P0361R1
Date: 20161015
Project: Programming Language C++, SG14, SG1, Library Evolution WG
Authors:

Hartmut Kaiser
Thomas Heller
Bryce Adelstein Lelbach
John Biddiscombe
Michael Wong

Emails:
hartmut.kaiser@gmail.com
thomas.heller@cs.fau.de
balelbach@lbl.gov
biddisco@cscs.ch
michael@codeplay.com

Reply to: hartmut.kaiser@gmail.com

Changes from previous versions of this document

P0361R0

• Renamed parallel_vector_task_policy to parallel_unseq_task_policy to match name changes
in Parallelism TS

• Added section discussing comments received since last revision of the paper
• Added section about progress guarantees
• Adding a generic version of the gather algorithm demonstrationg the usefulness of introducing new

execution policies.
• Added example to show benefits of futurization combined with asynchronous parallel algorithms

1 Invoking Algorithms Asynchronously

1.1 Introduction

This paper describes new execution policies enabling the asynchronous execution of the parallel algorithms
as defined by the Parallelism TS (N4507)[1]. This paper is part of an effort to design and propose uniform
parallelism APIs in C++ with the goal to make the language independent from any external solutions
(such as OpenMP or OpenACC). There have been several discussions in SG1 and SG14 during the recent
committee meetings in Kona and Jacksonville expressing interest in enabling asynchronous execution of
parallel algorithms.

This paper also continues the specific features and needs towards supporting Heterogeneous Devices which
was discussed in an evening session at [Jacksonville 2016][2]. In that evening session, Michael Wong presented
the motivation to support Heterogeneous devices and how it has been done in OpenMP, and was followed by
two C++ specific designs. Hartmut Kaiser presented the HPX design which caters more to a highperformance
computing viewpoint. Lee Howes presented the Khronos SYCL/OpenCL design which caters more to a
consumer device viewpoint. The discussion that followed, indicated enthusiastic support to move C++
towards full support for Heterogeneous computing by 2020, likely through an initial TS.

In general, all parallel algorithms as defined in N4507 are synchronous. This means that the execution of
an algorithm returns only after its operation has completely finished. It is well known, that this form of
fork/join parallelism imposes an implicit barrier onto the parallel execution flow. This is also currently the
case in OpenMP parallel regions. This barrier impedes parallel efficiency and efficient resource utilization
of the used processing units as the execution has to wait for the thread of execution which performs the
necessary join operation at the end of the execution of the algorithm.

1



The user has no means of controlling how and when this barrier is imposed and also has no means of avoiding
the resource starvation associated with it. A possible remedy for this problem is to allow for the algorithms
to be executed asynchronously. While this does not remove the implicit barrier at the end of the execution of
any of the algorithms, it allows to reduce the resource starvation by allowing to perform other, unrelated
tasks while the join-operation (and the associated tapering of parallel work) is being executed.

This paper proposes to enable such an asynchronous execution of all algorithms as defined by N4507 by
introducing special execution policies which essentially launch the execution of the algorithm on a new thread
of execution while the algorithm invocation itself now returns a std::future representing the result of its
execution.

Returning a Future object from the algorithm has the additional advantage of being able to integrate the
parallel algorithms with other asynchronous codes which also rely on representing their results through
std::future. This is especially important in light of the proposed additions to std::future as described by
the [Concurrency TS (4501)][3]. The proposed extensions have been implemented in [HPX][4] which has an
implementation of N4507. They are in use in production codes for some time.

2 Summary of the Proposed Functionality

An asynchronous execution policy is an object which fulfills the concept of an execution policy as defined in
N4507. Additionally it instructs a parallel algorithm to launch its execution on a new thread of execution
and changes the algorithm to return a Future object representing the result of the execution of the original
algorithm.

We propose that every one of the already specified execution policies (seq, par, and par_unseq) has a corre-
sponding asynchronous execution policy which is generated by seq(task), par(task), and par_unseq(task).

With those extensions, the following use cases of the parallel algorithms library are possible:

using namespace std::experimental::parallel::v1;
std::vector<int> data = { ... };

// legacy standard sequential sort
std::sort(data.begin(), data.end());
// explicitly sequential sort
sort(seq, data.begin(), data.end());
// permitting parallel execution
sort(par, data.begin(), data.end());
// permitting vectorized execution as well
sort(par_unseq, data.begin(), data.end());

// NEW: asynchronous, sequential execution
std::future<void> f1 = sort(seq(task), data.begin(), data.end());
// ... perform other work
f1.get(); // synchronize with the asynchronous sequential sort()

// NEW: asynchronous execution, allow for parallelization of the algorithm
std::future<void> f2 = sort(par(task), data.begin(), data.end());
// ... perform other work
f2.get(); // synchronize with the asynchronous parallel sort()

// NEW: asynchronous execution, allow for parallelization and vectorization
// of the algorithm
std::future<void> f3 = sort(par_unseq(task), data.begin(), data.end());
// ... perform other work

2



f3.get(); // synchronize with the asynchronous parallel vectorized sort()

3 Specification

Header <experimental/execution_policy> synopsis

The following definitions are being proposed to be added to this header file.

namespace std {
namespace experimental {
namespace parallel {
inline namespace v1 {

// 3.1, Task modifier tag type for execution policies
class task_execution_policy_tag {};

// 3.2, Task modifier instance for execution policies
constexpr task_execution_policy_tag task {};

// 3.3, Asynchronous execution policy type trait
template<class T> struct is_task_execution_policy;
template<class T> constexpr
bool is_task_execution_policy_v = is_task_execution_policy<T>::value;

// 3.4, Sequential asynchronous execution policy
class sequential_task_execution_policy;

// 3.5, Parallel asynchronous execution policy
class parallel_task_execution_policy;

// 3.6, Parallel+Vector asynchronous execution policy
class parallel_unseq_task_execution_policy;

// 3.7, Generator function operators added to existing execution policies
sequential_task_execution_policy
sequential_execution_policy::operator()(task_execution_policy_tag) const;

parallel_task_execution_policy
parallel_execution_policy::operator()(task_execution_policy_tag) const;

parallel_unseq_task_execution_policy
parallel_unseq_execution_policy::operator()(task_execution_policy_tag) const;

}
}
}
}

3.1 Task modifier tag type for execution policies

class task_execution_policy_tag { unspecified };

1. task_execution_policy_tag is a unique type used to generate an asynchronous execution policy from
its non-asynchronous counterpart

3



3.2 Task modifier instance for execution policies

constexpr task_execution_policy_tag task{}; 1 The header <experimental/execution_policy> declares a
global object for the task modifier tag type.

3.3 Asynchronous execution policy type trait

template<class T> struct is_task_execution_policy { see below };

1. is_task_execution_policy can be used to detect parallel execution policies for the purpose of
excluding function signatures from otherwise ambiguous overload resolution participation.

2. is_task_execution_policy<T> shall be a UnaryTypeTrait with a BaseCharacteristic of true_type
if T is the type of a standard or implementation-defined asynchronous execution policy, otherwise
false_type.

[Note: This provision reserves the privilege of creating nonstandard asynchronous execution policies to
the library implementation. end note]

3. The behavior of a program that adds specializations for is_task_execution_policy is undefined.

3.4 Sequential asynchronous execution policy

class sequential_task_execution_policy { unspecified };

1. The class sequential_task_execution_policy is an asynchronous execution policy type used as a
unique type to disambiguate asynchronous parallel algorithm overloading and require that a parallel
algorithm’s execution may not be parallelized, that the algorithm should be executed asynchronously,
and that the return type of the algorithm should be a future<T>, where T is the type as returned by
the non-asynchronous version of the same algorithm.

3.5 Parallel asynchronous execution policy

class parallel_task_execution_policy { unspecified };

1. The class parallel_task_execution_policy is an asynchronous execution policy type used as a
unique type to disambiguate asynchronous parallel algorithm overloading and indicate that a parallel
algorithm’s execution may be parallelized, that the algorithm should be executed asynchronously, and
that the return type of the algorithm should be a future<T>, where T is the type as returned by the
non-asynchronous version of the same algorithm.

3.6 Parallel+Vector asynchronous execution policy

class parallel_vector_task_execution_policy { unspecified };

1. The class parallel_vector_task_execution_policy is an asynchronous execution policy type used
as a unique type to disambiguate asynchronous parallel algorithm overloading and indicate that a
parallel algorithm’s execution may be vectorized and parallelized, that the algorithm should be executed
asynchronously, and that the return type of the algorithm should be a future<T>, where T is the type
as returned by the nonasynchronous version of the same algorithm.

4



3.7 Generator function operators added to existing execution policies

Every of the non-asynchronous execution policies as defined by N4507 has an added function operator used
to generate a corresponding asynchronous execution policy.

sequential_task_execution_policy
sequential_execution_policy::operator()(task_execution_policy_tag) const;

parallel_task_execution_policy
parallel_execution_policy::operator()(task_execution_policy_tag) const;

parallel_vector_task_execution_policy
parallel_vector_execution_policy::operator()(task_execution_policy_tag) const;

4 Exception Handling

All behavior regarding generating exceptions is unchanged from the Parallelism TS except that none of the
algorithms shall directly throw any of the generated exceptions if invoked with an asynchronous execution
policy but deliver the exception through the returned future object.

5 Progress guarantees

All guantees regarding progress of execution is unchanged from the Parallelism TS except that the point at
which the calling thread is blocking progress is moved from the end of the algorithm execution itself into the
returned future object.

6 Examples

6.1 Asynchronous Gather Algorithm

Given a synchronous algorithm gather:

template <typename BiIter, typename Pred>
pair<BiIter, BiIter>
gather(BiIter f, BiIter l, BiIter p, Pred pred)
{

BiIter it1 = stable_partition(f, p, not1(pred));
BiIter it2 = stable_partition(p, l, pred);
return make_pair(it1, it2);

}

the following example demonstrates how the proposed features can be used to compose more complex
asynchronous algorithms. The gather algorithm is meant to collect all elements in a given range [f, l) at
the given position p for which a given boolean predicate pred is true. The implementation above achieves
that by invoking stable_partition twice, once for all elements in the range [f, p) while using the inverted
predicate, and once for the elements in the range [p, l) using the predicate as is. The algorithm gather
returns a pair of iterators marking the range of the newly inserted elements.

The asynchronous version of the same algorithm (here gather_async), is called using the same arguments, it
however returns a future to the pair of result iterators.

5



template <typename BiIter, typename Pred>
future<pair<BiIter, BiIter>>
gather_async(BiIter f, BiIter l, BiIter p, Pred pred)
{

future<BiIter> f1 = stable_partition(par(task), f, p, not1(pred));
future<BiIter> f2 = stable_partition(par(task), p, l, pred);
return when_all(f1, f2).then(

[](tuple<future<BiIter>, future<BiIter>> p)
{

return make_pair(get<0>(p).get(), get<1>(p).get());
}

);
}

The benefit of calling the asynchronous versions of the stable_partition algorithms is twofold: a) both
subregions can be handled concurrently, and b) the overall algorithm can be made asynchronous.

The only caveat of this implementation is the slightly complicated code necessary to convert the pair of
futures into a future of pairs using when_all().then() (as proposed by the Concurrency TS).

However, by using co_await (see [P0057R3][5]), this can be further simplified:

template <typename BiIter, typename Pred>
future<pair<BiIter, BiIter>>
gather_async(BiIter f, BiIter l, BiIter p, Pred pred)
{

future<BiIter> f1 = stable_partition(par(task), f, p, not1(pred));
future<BiIter> f2 = stable_partition(par(task), p, l, pred);
co_return make_pair(co_await f1, co_await f2);

}

Please note, that the version using co_await is 100% semantically equivalent to the asynchronous version
using when_all().then(). Also, the latter would allow for building a generic algorithm:

template <typename ExPolicy, typename BiIter, typename Pred>
decltype(auto)
gather(ExPolicy policy, BiIter f, BiIter l, BiIter p, Pred pred)
{

auto r1 = stable_partition(policy, f, p, not1(pred));
auto r2 = stable_partition(policy, p, l, pred);
co_return make_pair(co_await r1, co_await r2);

}

This example demonstrates the importance of introducing new execution policies, as now those can be
transparently utilized in generic scenarios.

6.2 Halo exchanges

The purpose of this example is to support the claim that adding asynchrony to already parallel codes can
significantly improve performance by increasing parallel efficiency and system utilization. The results shown
here are taken from real-world, distributed applications.

Please note, that this example shows just one way of adding asynchrony to code, many other possible ways
exist, such like using std::thread directly, or using coroutines. The achieved effect should be the same.

In scientific computing, a very common paradigm to compute solutions for physical problems is known as
“Halo Exchange”. This means, that a computational domain is partitioned into various subdomains distributed
over different compute nodes in a computation cluster. In order to compute solutions to that problem,

6



information on the neighboring cells is needed (similar to a linear filter, for example a Gaussian Blur). In
pseudo code this looks a little bit like this:

for (auto t : time_steps)
{

exchange_halos(t);
compute_boundaries(t);
compute_interior(t);

}

Note, that all of the steps in itself are usually already massively parallelized.

The compute related functions can be expressed in terms of parallel algorithms (for example std::transform
or the proposed std::for_loop). The halo exchanges often consist of some form of network communication.
By allowing all three presented functions to return a future signalling the completion of the operation. It is
triviall to overlap communication with computation:

future<void> all_of_it = make_ready_future();
for (auto t : time_steps)
{

all_of_it.then([t](auto f) {
future<void> halo_done = exchange_halos(t);
future<void> boundaries_done = halo_done.then(

[t](auto done){ return compute_boundaries(t); });
future<void> interior_done = compute_interior(t);

// Signal completion of the complete update
return when_all(boundaries_done, interior_done);

});
}
all_of_it.get();

In order to effectively have the computation/communication overlap in this example, it is important that all
three operations are able to make progress independent of each other, while the user explicitly defines the
dependency between the halo exchange and the boundaries update, as mandated by the algorithm at hand.

The effect of this futurization of the algorithm can be observed in figure 1 below.

The top part of the picture shows the execution of the first, non-futurized version. While the compute
functions are using the synchronous parallel algorithms, you can still see the effect that there are “holes” in
the program execution which means that no work can be done due to no overlapping.

The bottom figure shows that all the holes in the utilization of the used compute resources are filled with useful
work since the dependencies are expressed in a finer grained fashion and communication and computation are
able to be overlapped perfectly. The overall execution time is reduced by almost a factor of two.

The complete example can be found at [6].

7 Discussion

During several rounds of discussion, both at the meeting in Oulu and in various phone calls since then people
have brought up a couple of points to be discussed here.

1. Use separate overloads for asynchronous algorithms instead of new execution policies

Having separate overloads for the asynchronous algorithms using a different function name instead of
introducing new execution policies is certainly an alternative solution to the problem addressed by this
paper.

7



Figure 1: Futurization Effect

8



However, we believe that having new execution policies would be a better solution as it would simplify
generic programming while building more complex algoprithms out of tyhe standard algorithms.

The rationale for using sepoarate function names instead is to allow for the asynchronous algorithms
to take a different set of arguments (comapred to the synchronous counter parts). However from our
experience with implementing the asynchronous algorithms in HPX we have not come across a need for
this kind of changes.

2. Do not introduce asynchronous algorithms now as those may be subsumed by core language functionalities
(such as suspendable functions, see [P0071R2][6]) which are currently proposed and under discussion.

Asynchronous algorithms are a feature requested by several people in SG1 and SG14. HPX provides
a solid implementation of (a large part of) all algorithms of the Parallelism TS. We have significant
implementation experience and a sizable user base that uses the asynchronous algorithms in their
codes (for exemplar results see the section “Halo Exchanges” above). Also, the proposed asynchronous
algorithms are implementable as a pure library solution.

The suspendable functions proposal without any doubt has merit and may partially or fully subsume
the features proposed her. However, those require compiler support and it is unclear if and when this
feature will make it into the language.

We would rather move forward with an existing and proven solution now to give users more experience
with possible implementations than to wait for a compiler based solution which may never materialize.

8 References

[1] N4507: Technical Specification for C++ Extensions for Parallelism, (ed) J. Hoberock, http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

[2] P00234R0: Towards Massive Parallelism (aka Heterogeneous Devices/Accelerator/GPGPU) support in C++
with HPX, Michael Wong, Hartmut Kaiser, Thomas Heller, http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf

[3] N4501: Working Draft, Technical Specification for C++ Extensions for Concurrency, (ed) A. Laksberg,
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4501.html

[4] HPX: A general purpose C++ runtime system for parallel and distributed applications of any scale,
https://github.com/STEllARGROUP/hpx.

[5] P0057R3: Wording for Coroutines, Gor Nishanov, Jens Maurer, Richard Smith, Daveed Vandevoorde,
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf

[6] P0073R2: On unifying the coroutines and resumable functions proposals, Torvald Riegel, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2016/p0073r2.pdf

[7] HPX Stencil Example, https://github.com/STEllAR-GROUP/tutorials/tree/master/examples

9


	Invoking Algorithms Asynchronously
	Introduction

	Summary of the Proposed Functionality
	Specification
	Task modifier tag type for execution policies
	Task modifier instance for execution policies
	Asynchronous execution policy type trait
	Sequential asynchronous execution policy
	Parallel asynchronous execution policy
	Parallel+Vector asynchronous execution policy
	Generator function operators added to existing execution policies

	Exception Handling
	Progress guarantees
	Examples
	Asynchronous Gather Algorithm
	Halo exchanges

	Discussion
	References

