
Document Number: P0349R0

Date: 2016-05-24

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: SG1

Assumptions about the size of datapar

ABSTRACT

This paper discusses consequences of using datapar for architectures with variable
vector width. The assumptions a compiler can make about the size() of datapar
has consequences for optimizations. On the other hand, this requires restrictions on
datapar::size() that may be surprising to users.

CONTENTS

1 Introduction 1
1.1 Hardware Applicability . 1
1.2 Optimization Opportunities . 1

2 Discussion 2
2.1 No sizeof . 2
2.2 A variable ABI . 3
2.3 Parallel Algorithms . 3

3 Conclusion 5
A Acknowledgements 5
B Bibliography 5

P0349R0 1 Introduction

1 INTRODUCTION

For more information on datapar see [P0214R0] and [1].

1.1 hardware applicability

The assumption that datapar<T>::size() yields a constant expression on every
conceivable hardware implementation for efficient data parallel execution is limit-
ing. There exist vector machines that advertise a variable vector length. There may
be research going into future hardware to loosen the vector width on SIMD instruc-
tions. Consequently, the static member functions static constexpr size_t size()
in datapar and mask may inhibit or at least reduce the applicability of the program-
ming model to the widest range of available and future hardware.

1.2 optimization opportunities

Consider the following code snippet:
void f(const float *input, float *output, size_t N) {

using V = datapar<float>;
for (int i = 0; i + V::size() <= N; i += V::size()) {

const V x = load<V>(&input[i]);
store(x + 1, &output[i]);

}
// process the rest

}

The compiler sees a loop that reads V::size() elements from input and writes
the same number of elements to output before going into the next iteration. The
compiler traditionally would do alias analysis if it wants to determine whether it can
reorder the loads and stores, as they could be dependent. With datapar there is an
opportunity to loosen the rules. Consider that datapar<float> returns a different
number for size() depending on the target system and available SIMD instruction
set. The type did not require any specific number of elements. If the compiler thus
were allowed to assume V to have any size(), it could assume size() == N. In this
case it would not have to do the alias analysis and could unroll and reorder more
freely.
Enabling this optimization can have a noticeable impact (depending on the target

architecture, of course). Consider x86 where the float add instruction has a latency
of 3 cycles and a throughput of 1 cycle. If the sequence of instructions must follow
load x0; x0 += 1; store x0; load x1; x1 += 1; store x1; …, the CPU must ensure that the
loads and stores of subsequent iterations are independent to enable out-of-order,
pipelined, superscalar execution. Depending on the (micro)architecture, this incurs a

1

P0349R0 2 Discussion

noticeable inefficiency. If, however, the sequence of operations can be reordered by
the compiler to e.g. load x0; load x1; x0 += 1; load x2; load x3; x1 += 1; load x4; load
x5; x2 += 1; load x6; store x0; x3 += 1; store x1; …, then the CPU can easily pipeline
the add instructions.
However, consider the following calling code (in a different TU to make things

worse):
void g() {

float data[1000] = ...;
if (datapar<float>::size() <= 8) {

f(data, data + 8, 1000 - 8);
}

}

The user ensured that the load store dependencies are met. The above optimization
thus would break the users intention.

2 DISCUSSION

Having a constexpr size() in datapar and mask for ABI parameters that are not
fixed_size<N> thus appears to inhibit the full potential of expressing data parallelism
via the type system. Is it possible to weaken the size() function to resolve the
issues? At this point I have no solution. This paper is meant to set a starting point
to either figuring out a solution or a well-informed decision to not pursue this as a
design goal any further.
Considering that the inhibitor is restricted load-store reordering because of aliasing,

the best and most general solution may be to enable restrict or something similar
in C++.

2.1 no sizeof

Let us start with the simple loop:
using V = datapar<float>;
for(int i = 0; i < N; i += V::size()) {

store(1 + load(&input[i]), &output[i]);
}

If the compiler shall generate code for hardware that determines the vector width
only when executing the SIMD load/store/add instructions, then V::size() cannot
be a constant expression. Rather, the machine code would have to increment i us-
ing a value obtained from some register or instruction. (If V::size() is a constant
expression, then the increment can be encoded into the instruction itself.) Would
dropping constexpr from size() help? At least it would decouple the number of

2

P0349R0 2 Discussion

elements from the type information. However, as a consequence sizeof(V) could
also not return any useful value, since one could infer the constexpr size() from
sizeof. Thus, the declaration of structures with datapar members could not have a
useful sizeof.
The major advantage of types with data-parallel semantics over the control-flow

approach is the vectorization of data structures. Suddenly this would not work any-
more. At this point this approach does not show much appeal.

2.2 a variable abi

Consider a special ABI tag, called datapar_abi::variable in the following. An in-
stance of datapar<T, variable> would not have a constexpr size() function, no
sizeof, and using it as a data member would be ill-formed. So what is it useable for?

using V = datapar<float, datapar_abi::variable>;
for (int i = 0; i < N; i += V::size()) {

store(1 + load(&input[i]), &output[i]);
}

In essence this would be equivalent to writing (using some hypothetical simd_for
loop construct, which allows vector execution of the loop body):
simd_for (int i = 0; i < N; ++i) {

output[i] = 1 + input[i];
}

I cannot image any advantage of this construction over control-flow based vector-
ization except maybe the ability to mark functions as vectorizable.
In any case, calling it datapar<T, variable> is asking for repeating the std::

vector<bool> mistake. Therefore, it should rather use a name such as dyndata-
par<T>1

2.3 parallel algorithms

Consider writing the loop as
transform(execution_policy::datapar,

begin(input), end(input), begin(output) [](auto x) {
return x + 1;

});

1 Yes, it would likely repeat many of the discussions around dynarray.

3

P0349R0 2 Discussion

Here the use of datapar is implicit. The implementation chooses the number of el-
ements. The user has no influence on choosing the datapar_abi and thus has no
guarantee for the size() outside of the loop. (Inside the loop the code can still query
x.size() and choose different branches.) But at this point the compiler has all nec-
essary information to use a variable vector width or to unroll the loop and reorder
loads and stores.
Is this still true if there are function calls from inside the callable? The following

code can still be assumed to work correctly with an arbitrary number of elements in
datapar, because the Abi parameter is unconstrained:
template <typename T, typename Abi>
datapar<T, Abi> f(datapar<T, Abi> x) { return x + 1; }

transform(execution_policy::datapar,
begin(input), end(input), begin(output) [](auto x) {

return f(x);
});

If, however, the Abi parameter is constrained, the compiler would have to be con-
servative. It would have to assume that the maximum number of elements it may
reorder is bounded by the maximum number of elements the overloads of g support.

template <typename T>
datapar<T, datapar_abi::avx> g(datapar<T, datapar_abi::avx> x) { return x + 1; }
template <typename T>
datapar<T, datapar_abi::sse> g(datapar<T, datapar_abi::sse> x) { return x + 1; }
template <typename T>
datapar<T, datapar_abi::scalar> g(datapar<T, datapar_abi::scalar> x) { return x + 1; }

transform(execution_policy::datapar,
begin(input), end(input), begin(output) [](auto x) {

return g(x);
});

However, it is unlikely that the above code could work with all implementations of
transform. An implementation might choose to use a datapar<T, fixed_size<N>>,
e.g. for prologue and epilogue. Thus, the user would have to provide a datapar<T,
fixed_size<N>> overload:
template <typename T, int N>
datapar<T, datapar_abi::fixed_size<N>> g(datapar<T, datapar_abi::fixed_size<N>> x) {

return x + 1;
}
template <typename T>
datapar<T, datapar_abi::avx> g(datapar<T, datapar_abi::avx> x) { return x + 1; }

4

P0349R0 3 Conclusion

template <typename T>
datapar<T, datapar_abi::sse> g(datapar<T, datapar_abi::sse> x) { return x + 1; }
template <typename T>
datapar<T, datapar_abi::scalar> g(datapar<T, datapar_abi::scalar> x) { return x + 1; }

transform(execution_policy::datapar,
begin(input), end(input), begin(output) [](auto x) {

return g(x);
});

And suddenly the vector width is unbounded again.

3 CONCLUSION

I believe it is worthwhile to investigate the Parallel Algorithms optimization opportu-
nities. From what I can tell, there would not need to be any extra wording to allow
variable vector width execution and load store reordering in such cases. The ability to
do these transformations follows naturally from letting the implementation choose
the datapar_abi.

A ACKNOWLEDGEMENTS

This work was supported by GSI Helmholtzzentrum für Schwerionenforschung and
the Hessian LOEWE initiative through the Helmholtz International Center for FAIR (HIC
for FAIR).

B BIBLIOGRAPHY

[1] Matthias Kretz. “Extending C++ for Explicit Data-Parallel Programming
via SIMD Vector Types.” Frankfurt (Main), Univ. PhD thesis. 2015. doi:
10 . 13140 / RG . 2 . 1 . 2355 . 4323. url: http : / / publikationen . ub . uni -
frankfurt.de/frontdoor/index/index/docId/38415.

[P0214R0] Matthias Kretz. P0214R0: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2016. url: http://www.open- std.org/
jtc1/sc22/wg21/docs/papers/2016/p0214r0.pdf.

5

http://dx.doi.org/10.13140/RG.2.1.2355.4323
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r0.pdf

	1 Introduction
	1.1 Hardware Applicability
	1.2 Optimization Opportunities

	2 Discussion
	2.1 No sizeof
	2.2 A variable ABI
	2.3 Parallel Algorithms

	3 Conclusion
	A Acknowledgements
	B Bibliography

