
Document number: P0338R0

Date: 2016-05-24

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper presents a proposal for a generic factory make<TC>(args...) that allows to make generic algorithms that need to
create an instance of a wrapped class TC from the underlying types.

P0091R0 extends template parameter deduction for functions to constructors of template classes. With this feature, it would seam
clear that this proposal lost most of its added value but this is not the case.

1. Introduction
2. Motivation and scope
3. Proposal
4. Design rationale
5. Proposed wording
6. Implementability
7. Open points
8. Acknowledgements
9. References

This paper presents a proposal for a family of generic factories make<TC>(args...) that create an instance of a wrapping
class from a type constructor and his underlying types as well as emplace factories make<T>(args...) that creates an
instance of a wrapping class by emplace constructing the underlying type from the provided arguments.

P0091R0 extends template parameter deduction for functions to constructors of template classes. With this feature, it would seam
that this proposal has lost most of its added value but this is not the case, as P0091R0 is a feature for the user that cannot be
used in generic code.

All these types, shared_ptr<T> , unique_ptr<T,D> , optional<T> , expected<T,E> (see P0323R0) and

C++ generic factories

Table of Contents

Introduction

Motivation and scope

Possible valued types

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/factories/p0338r0.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf

future<T> , have in common that all of them have an underlying type T .

There are two kind of factories:

type constructor with the underlying types as parameter

back_inserter

make_optional

make_ready_future

make_expected

emplace construction of the underlying type given the constructor parameters

make_shared

make_unique

When writing an application, the user knows if the function to write should return a specific type, as shared_ptr<T> ,
unique_ptr<T,D> , optional<T> , expected<T,E> or future<T> . E.g. when the user knows that the function

must return an owned smart pointer it would use unique_ptr<T> .

template <class T>
unique_ptr<T> f() {
 T a,
 ...
 return make_unique(a);
 //return unique_ptr(a); // this should be correct with [P0091R0]
}

If the user knows that the function must return a shared pointer

template <class T>
shared_ptr<T> f() {
 T a,
 ...
 return make_shared(a);
 //return shared_ptr(a); // this should be correct with [P0091R0]
}

However when writing a library, the author doesn't always know which type the user wants as a result. In these case the function
library must take some kind of type constructor to let the user make the choice.

template <template <class> class TC, class T>
TC<T> f() {
 T a,
 ...
 return make<TC>(a);
 //return TC(a); // This should not work even with [P0091R0]
}

Another generic example: Suppose that PossiblyValued types define a pv.value() and a pv.has_value() functions and
the traits value_type_t<PV> . For these kind of classes, we can define the functor_map function as follows.

template <class Callable, class PossiblyValued>
auto functor_map f(Callable c, PossiblyValued pv)
 -> rebind_t<PossiblyValued, decltype(c(pv.value()))>
{

 if (pv.has_value())
 return make<type_constructor_t<PossiblyValued>>(c(pv.value()));
 else
 return none<type_constructor_t<PossiblyValued>>();
}

In addition, we have factories for the product types such as pair and tuple

make_pair

make_tuple

WITHOUT proposal WITH proposal

int v=0;
auto x1 = make_shared<int>(v);
auto x2 = make_unique<int>(v);
auto x3 = make_optional(v);
auto x4v = make_ready_future();
auto x4 = make_ready_future(v);
auto x5v = make_ready_future().share();
auto x5 = make_ready_future(v).share();
auto x6v = make_expected();
auto x6 = make_expected(v);
auto x7 = make_pair(v, v);
auto x8 = make_tuple(v, v, 1u);

future<int&> x4r = make_ready_future(std::ref(v));

auto x1 = make_shared<A>(v, v);
auto x2 = make_unique<A>(v, v);
auto x3 = make_optional<A>(v,v);
auto x4 = make_ready_future<A>(v,v);
auto x5 = make>(v, v);
auto x6 = make_expected<A>(v, v);

int v=0;
auto x1 = make<shared_ptr>(v);
auto x2 = make<unique_ptr>(v);
auto x3 = make<optional>(v);
auto x4v = make<future>();
auto x4 = make<future>(v);
auto x5v = make<shared_future>();
auto x5 = make<shared_future>(v);
auto x6v = make<expected>();
auto x6 = make<expected>(v);
auto x7 = make<pair>(v, v);
auto x8 = make<tuple>(v, v, 1u);

future<int&> x4r = make<future>(std::ref(v));

auto x1 = make<shared_ptr<A>>(v, v);
auto x2 = make<unique_ptr<A>>(v, v);
auto x3 = make<optional<A>>(v,v);
auto x4 = make<future<A>>(v,v);
auto x5 = make<shared_future<A>>(v, v);
auto x6 = make<expected<A>>(v, v);

We can use the class template name as a type constructor

Product types

Comparaison

vector<int> vi1 = { 0, 1, 1, 2, 3, 5, 8 };
vector<int> vi2;
copy_n(vi1, 3, maker<back_insert_iterator>(vi2));

int v=0;
auto x1 = make<shared_ptr>(v);
auto x2 = make<unique_ptr>(v);
auto x3 = make<optional>(v);
auto x4v = make<future>();
auto x4 = make<future>(v);
auto x5v = make<shared_future>();
auto x5 = make<shared_future>(v);
auto x6v = make<expected>();
auto x6 = make<expected>(v);
auto x7 = make<pair>(v, v);
auto x8 = make<tuple>(v, v, 1u);

or making use of reference_wrapper type deduction

int v=0;
future<int&> x4 = make<future>(std::ref(v));

or use the class name to build to support in place construction

auto x1 = make<shared_ptr<A>>(v, v);
auto x2 = make<unique_ptr<A>>(v, v);
auto x3 = make<optional<A>>(v,v);
auto x4 = make<future<A>>(v,v);
auto x5 = make<shared_future<A>>(v, v);
auto x6 = make<expected<A>>(v, v);

Note, with P0091R0, the following is already possible

int v=0;
auto x3 = optional(v);
auto x7 = pair(v, v);
auto x8 = tuple(v, v, 1u);

We can also make use of the class name to avoid the type deduction

int i;
auto x1 = make<future<long>>(i);

Sometimes the user wants that the underlying type be deduced from the parameter, but the type constructor needs more
information. A type holder _t can be used to mean any type T .

auto x2 = make<expected<_t, E>>(v);
auto x2 = make<unique_ptr<_t, MyDeleter>>(v);

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

template <class TC>
 invoke<TC, int> safe_divide(int i, int j)
{
 if (j == 0)
 return {};
 else
 return make<TC>(i / j);
}

We can use this function with different type constructors as

auto x = safe_divide<optional<_t>>(1, 0);

For the make default constructor function, the class needs at least to have a default constructor

C();

For the make copy/move constructor function, the class needs at least to have a constructor from the underlying types.

C(Xs&&...);

When the existing class doesn't provide the needed constructor as e.g. future<T> , the user needs specialize the
std::factory_traits<T> class providing the needed overloads for make .

Proposal

Type constructor factory

How to define a class that wouldn't need customization?

How to customize an existing class

 namespace experimental
 {
 template <class T>
 struct factory_traits<future<T>> {

 template <class ...Xs>
 static //constexpr
 future<T> make(Xs&& ...xs)
 {
 return make_ready_future<T>(forward<Xs>(xs)...);
 }
 };
 template <>
 struct factory_traits<future<void>> {

 static //constexpr
 future<void> make()
 {
 return make_ready_future();
 }
 };
 }```

How to define a type constructor?

The make function is already useful with the class template parameter. However, we need in some cases the high

The simple case is when the class has a single template parameter as is the case for
`future<T>`.

```c++
namespace boost
{
  struct future_tc {
    template <class T>
    using invoke = future<T>;
  };
}

When the class has two parameters and the underlying type is the first template parameter, as it is the case for expected ,

namespace boost
{
  template <class E>
  struct expected_tc<E> {
    template <class T>
    using invoke = expected<T, E>;
  };
}

If the second template depends on the first one as it is the case of unique_ptr<T, D> , the rebinding of the second
parameter must be done explicitly.



namespace std {
    template <class D, class T>
    struct rebind;
    template <template <class...> class TC, class ...Ts, class ...Us>
    struct rebind<TC<Ts...>, Us...>> {
      using type = TC<Us...>; 
    };
    template <class M, class ...Us>
    using rebind_t = typename rebind<M, Us...>>::type;
  }
  
  struct default_delete_tc 
  {
    template<class T>
    using invoke = default_delete<T>;
  };
    
  template <class D>
    struct unique_ptr_tc
  {
    template<class T>
    using invoke = unique_ptr<T, detail::rebind_t<D, T>>;
  };
}

Defining these type constructors is cumbersome. This task can be simplified with some helper classes. P0343R0 presents these
helper classes.

The previous type constructors could be rewritten using these helper classes as follows:

namespace std {
  template <> 
    struct future<experimental::_t> : experimental::meta::quote<future> {};
}

namespace std {
namespace experimental {
  template <class E> 
    struct expected<_t, E> : meta::bind_back<expected, E> {};
}}

Helper classes

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf


namespace std { 
  template <>
    struct default_delete<experimental::_t> : experimental::meta::quote<default_delete> {};
    
  template <class D>
    struct unique_ptr<experimental::_t, D>
  {
    template<class T>
    using invoke = unique_ptr<T, experimental::meta::rebind_t<D, T>>;
  };
}

This proposal uses a trait to customize the behavior.

namespace std {
namespace experimental {
inline namespace fundamental_v3 {
    template <class T>
    struct make_traits_default
    {
        template <class ...Xs>
        constexpr auto make(Xs&& xs) 
        {
            return T{forward<Xs>(xs)...};
        }
    };
}}}

Alternatively, we could have used of overloading a make_custom  function found by ADL having an additional type<T>

parameter.

    template <class T, class ...Xs>
    constexpr auto make(type<T>, Xs&& xs) 

The first make  factory uses default constructor to build a C<void> .

The second make  factory uses conversion constructor from the underlying type(s).

The third make  factory is used to be able to do emplace construction given the specific type.

As it is the case for make_pair  when the parameter is reference_wrapper<T> , the type deduced for the underlying type

Design rationale

Customization point

Why the factory has 3 flavors?

reference_wrapper<T>  overload to deduce T&



is T& .

This proposal takes into account also product type factories (as std::pair  or std::tuple ).

  // make product factory overload: Deduce the resulting `Us` 
  template <template <class...> class TC, class ...Xs>
    TC<decay_unwrap_t<Xs>...> make(Xs&& ...xs);
  // make product factory overload: Deduce the resulting `Us` 
  template <class TC, class ...Xs>
    invoke<TC, decay_unwrap_t<Xs>...> make(Xs&& ...xs);

auto x = make<pair>(1, 2u);  
auto x = make<tuple>(1, 2u, string("a"));  

It is simple to define a high order maker<TC>  factory of factories that can be used in standard algorithms.

For example

std::vector<X> xs;
std::vector<Something<X>> ys;
std::transform(xs.begin(), xs.end(), std::back_inserter(ys), maker<Something>{});

where

  template <template <class> class T>
  struct maker {
    template <typename ...X>
    constexpr auto
    operator()(X&& ...x) const
    {
        return make<T>(forward<X>(x)...);
    }     
  };

The main problem defining function objects is that we cannot have the same class with different template parameters. The
previous maker  class template has a template class parameter. We need an additional class that takes a type constructor or a
type.

Product types factories

High order factory



  template <template <class> class Tmpl>
  struct maker_tmpl {
    template <typename ...X>
    constexpr auto
    operator()(X&& ...x) const
    {
        return make<Tmpl>(forward<X>(x)...);
    }     
  };

  template <class TC>
  struct maker_tc {
    template <typename ...Args>
    constexpr auto
    operator()(Args&& ...args) const
    {
        return make<TC>(forward<Args>(args)...);
    }     
  };  
 
  template <class T>
  struct maker_t
  {
    template <class ...Args>
    constexpr auto 
    operator()(Args&& ...args) const 
    {
      return make<T>(std::forward<Args>(args)...);
    }
  };

Now we can define a maker  factory for high-order make  functions as follows

template <class T>
// requires not is_type_constructor<T>{}
maker_t<T> maker() { return maker_t<T>{}; }

template <class TC>
// requires is_type_constructor<TC>()
maker_tc<TC> maker() { return maker_tc<TC>{}; }

template <template <class ...> class TC>
maker_tmpl<TC> maker() { return maker_tmpl<TC>{}; }

The previous example would be instead

std::vector<X> xs;
std::vector<Something<X>> ys;
std::transform(xs.begin(), xs.end(), std::back_inserter(ys), maker<Something>());

Note the use of ()  instead of {}



These changes are entirely based on library extensions and do not require any language features beyond what is available in
C++14. There are however some classes in the standard that needs to be customized.

The proposed changes are expressed as edits to N4564 the Working Draft - C++ Extensions for Library Fundamentals V2.

The current wording make use of decay_unwrap_t  as proposed in P0318R0, but if this is not accepted the wording can be
changed without too much troubles.

The current wording make use of some meta-programming utilities defined in P0343R0.

------------------------------------------------------- Insert a new section. -------------------------------------------------------

X.Y Factories [functional.factorires]

X.Y.1 In General

X.Y.2 Header synopsis

namespace std
{
namespace experimental
{
inline namespace fundamental_v3
{

  template <class T>
  struct factory_traits_default;
  template <class T>
  struct factory_traits : factory_traits_default<T> {};
  
  // make() overload
  template <template <class ...> class M>
    M<void> make();
  
  // requires a type constructor
  template <class TC>
    meta::invoke<TC, void> make();
  
  // make overload: requires a template class parameter, deduce the underlying type
  template <template <class ...> class Tmpl, class ...Xs>
    Tmpl<decay_unwrap<Xs>...> make(Xs&& ...xs);

  // make overload: requires a type constructor, deduce the underlying types
  template <class TC, class ...Xs>
    meta::invoke<TC, decay_unwrap<Xs>...> make(Xs&& ...xs);
    
  // make overload: don't deduce the underlying types, 

Impact on the standard

Proposed wording

General utilities library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0318r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf


  // don't deduce the underlying type from Xs
  // requires M is not a type constructor
  template <class M, class ...Xs>
    M make(Xs&& ...xs);
    
    
  template <class TC>
  struct maker_tc;
  
  template <template <class> class T>
  struct maker_tmpl;  
 
  template <class T>
  struct maker_t;
  
  // requires a type constructor
  template <class TC>
    maker_tc<TC> maker();
    
  // requires T is not a type constructor
  template <class T>
    maker_t<T> maker();

  template <template <class ...> class TC>
    maker_tmpl<TC> maker();
    

}
}
}

X.Y.3 Template function make

X.Y.4 template + void

  template <template <class ...> class M>
  M<void> make();

Effects: Forwards to the customization point. As if

    return make<type_constructor_t<meta::quote<M>>>();

X.Y.5 template + deduced underlying type

template <template <class ...> class M, class ...Xs>
  M<decay_unwrap<Xs>...> make(Xs&& ...xs);

Effects: Forwards to the customization point. As if

    return make<type_constructor_t<meta::quote<M>>>(std::forward<Xs>(xs)...);

X.Y.6 type constructor + deduced underlying type



  template <class TC, class ...Xs>
    meta::invoke<TC, decay_unwrap<Xs>...> make(Xs&& ...xs);

Effects: Forwards to the customization point. As if

    return factory_traits<meta::invoke<TC, deduced_type_t<Xs>...>>::make(std::forward<Xs>(xs)...);

Remark: This function shall not participate in overload resolution until
meta::is_callable<TC(deduced_type_t<Xs>...)>::value .

X.Y.7 type + non deduced underlying type

template <class M, class ...Xs>
  M make(Xs&& ...xs);

Effects: Forwards to the customization point. As if

    return factory_traits<M>::make(std::forward<Xs>(xs)...);

Remark: This function shall not participate in overload resolution if
meta::is_callable<TC(deduced_type_t<Xs>...)>::value .

X.Y.8 Class teemplate factorytraitsdefault

  template <class T>
  struct factory_traits_default 
  {
    template <class ...Xs>
    static constexpr
    auto make(Xs&& ...xs)
    -> decltype(T(std::forward<Xs>(xs)...))
    {
      return T(std::forward<Xs>(xs)...);
    }  
  };

Default customization point for classes defining the constructor.

Returns: A T  constructed using the constructor T(std::forward<Xs>(xs)...)

Throws: Any exception thrown by the constructor.

Remark: factory_traits_default<T>::make  function shall not participate in overload resolution until
T(std::forward<Xs>(xs)...)  is well formed.

Next follows some examples of customizations that could be included in the standard

Example of customizations



Nothing to do.

Nothing to do.

namespace std {
namespace experimental {
    template <class T>
        struct factory_traits<future<T>> 
        {
            template <class ...Xs>
                static 
                future<T> make(Xs&& ...xs)
            {
                return make_ready_future<T>(forward<Xs>(xs)...);
            }
        };
    template <>
        struct factory_traits<future<void>> 
        {
            static 
                future<void> make()
            {
                return make_ready_future();
            }
        };
    template <class T>
        struct factory_traits<shared_future<T>> 
        {
            template <class ...Xs>
                static 
                shared_future<T> make(Xs&& ...xs)
            {
                return make_ready_future<DX>(forward<Xs>(xs)...).share();
            }
    };
    template <>
        struct factory_traits<shared_future<void>> 
        {
            static //constexpr
                shared_future<void> make()
            {
                return make_ready_future().share();
            }
        };      
}     
}

optional

expected

future / shared_future



namespace std {
namespace experimental {
    template <class T, class D>
        struct factory_traits<unique_ptr<T, D>> 
        {
            template <class ...Xs>
            static
            unique_ptr<T, D> make(Xs&& ...xs)
            {
                return make_unique<T>(forward<Xs>(xs)...);
            }
        };
}}

namespace std {
namespace experimental {
    template <class T>
        struct factory_traits<shared_ptr<T>> 
        {
            template <class ...Xs>
                static
                shared_ptr<T> make(Xs&& ...xs)
            {
                return make_shared<T>(forward<Xs>(xs)...);
            }
        };
}}

Nothing to do.

Nothing to do.

There is a partial implementation at https://github.com/viboes/std-make/include/experimental/make.hpp .

The authors would like to have an answer to the following points if there is at all an interest in this proposal:

unique_ptr

shared_ptr

pair

tuple

Implementability

Open points



Is there an interest on the make  factories?

Should the customization be done with overloading or with traits?

The current proposal uses traits. The alternative is to use overloading.

If overloading is preferred, should the customization function names be suffixed e.g. with _custom ?

Should the high-order function factory maker  be part of the proposal?

Should the resulting Callable from the high-order function factory maker  be implementation defined as it is the result of
std::bind ?

Should the function factories make  be high-order function objects?

N4381 proposes to use function objects as customized points, so that ADL is not involved.

This has the advantages to solve the function and the high order function at once.

The same technique is used a lot in other functional libraries as Range-V3, Fit and Pure.

The authors don't know how to manage with a single function object for the 3 kind of interfaces. An so there will be 3 function
objects that should be named. The authors believe that the proposed high-order function factory maker  is more
appropriated.

Many thanks to Agustín K-ballo Bergé from which I learn the trick to implement the different overloads. Scott Pager helped me to
identify a minimal proposal, making optional the helper classes and of course the addition high order functional factory and the
missing reference_wrapper overload.

Thanks to Mike Spertus for its P0091R0 proposal that would even help to avoid the factories in the common cases.

N4381 - Suggested Design for Customization Points

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4381.html

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

P0091R0 - Template parameter deduction for constructors (Rev. 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

P0318R0 decay_unwrap  and unwrap_reference

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0318r0.pdf

P0319R0 - Adding Emplace functions for promise<T>/future<T>

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0319r0.pdf

Acknowledgements

References

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4381.html
https://github.com/ericniebler/range-v3
https://github.com/pfultz2/Fit
https://github.com/splinterofchaos/Pure
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4381.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0318r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0319r0.pdf


P0323R0 - A proposal to add a utility class to represent expected monad (Revision 2)

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf

P0343R0 - Meta-programming High-Order functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf

Range-V3

https://github.com/ericniebler/range-v3

Meta

https://github.com/ericniebler/meta

Boost.Hana

https://github.com/ldionne/hana

Pure

https://github.com/splinterofchaos/Pure

Fit

https://github.com/pfultz2/Fit

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/meta
https://github.com/ldionne/hana
https://github.com/splinterofchaos/Pure
https://github.com/pfultz2/Fit

