
Document number: P0320R1

Date: 2016-10-12

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group/Concurrency Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper presents an extension of thread construction allowing to pass an additional implementation
defined attributes parameter.

1. Introduction
2. Motivation and Scope
3. Proposal
4. Design Rationale
5. Proposed Wording
6. Implementability
7. Open points
8. Acknowledgements
9. References

The 1st revision of this proposal fixes some typos and takes in account the feedback from Oulu meeting.
Next follows the direction of the committee:

Make std::thread::attributes implementation defined.

Thread Constructor Attributes

Table of Contents

History

Revision 1

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/thread/p0320r1.md#references

Depending on the platform, there are some attributes that can be provided at construction time. However
these attributes are platform dependent, and while there are some such as the stack size that are quite
current on major operating systems such as Posix, the stack size of individual threads tends to be fixed at
thread creation time, some platforms don't know what to do with this stack size, e.g. platforms with virtual /
abstract machine.

This paper presents an extension of thread construction allowing to pass an additional implementation
defined attributes parameter.

Today we can construct an instance of thread with a function or callable object , e.g:

void find_the_question(int the_answer);

std::thread deep_thought_2(find_the_question, 42);

Threads launched in this way are created with implementation defined thread attributes as stack size,
scheduling, priority, ... or any platform specific attributes.

However in some specific domains it is important to be able to be more specific so that the resources are
used in an optimal way.

As each platform has its own specific thread construction attributes, it is not evident how to provide a
portable interface that allows the user to set the platform specific attributes. This paper stay in the middle
road through the class std::thread::attributes which allows to set at least in a non portable way
the platform specific attributes.

It is up to each implementation to provide the specific interface for each platform. Whether several
implementation provide the same interface fro a specific platform is out of the scope of this proposal.

This paper proposes then to

add a implementation dependent thread::attributes class.
add thread constructors taking a thread::attributes parameter.

Introduction

Motivation and Scope

Proposal

http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread_create.html

In an implementation providing a std::thread::attributes::set_stack_size function, the stack
size attribute of a thread can be set as follows:

std::thread::attributes attrs;
attrs.set_stack_size(4096*10);
std::thread deep_thought_2(attrs, find_the_question, 42);

Even for this simple attribute there are portable issues as some platforms could require that the stack size
should have a minimal size and/or be a multiple of a given page size. It is up to the library implementation
to define its interface and possibly adapt the requested size to the platform constraints so that the user
doesn't need to take care of it.

The implementation can provide also function to get a native handle
native_handle_type native_handle() . E.g. on Posix platforms the user will need to get the

thread attributes native handle and use it for the appropriate attribute.

Next follows how the user could set the stack size and the scheduling policy on Posix platforms.

std::thread::attributes attrs;
// ... pthread version
pthread_attr_setschedpolicy(attr.native_handle(), SCHED_RR);
pthread_attr_setstacksize(attr.native_handle(), 4096*10);
std::thread th(attrs, find_the_question, 42);

On Windows platforms it is not so simple as there is no type that compiles the thread attributes. There is
one attribute linked to the creation of a thread on Windows that is emulated via the
thread::attributes class, this is the LPSECURITY_ATTRIBUTES lpThreadAttributes . The

implementation can provide a non portable set_security function so that the user can provide it
before the thread creation as follows

How to set the stack size?

Using a native_handle_type native_handle()

Implementation defined thread::attributes interface

std::thread::attributes attrs;
// set non portable attribute stack_size
attr.set_stack_size(4096*10);
// set non portable attribute security
LPSECURITY_ATTRIBUTES sec;
attr.set_security(sec); // non portable
std::thread th(attrs, find_the_question, 42);
//...

There are no single thread attribute that can be implemented in a portable way. Some platforms allow to set
the stack size, other have two stacks, other allows to set the thread name, ... Saying that C++ has a stack
traditionally opens up a can of worms.

Letting the std::thread::attributes implementation defined allow an implementation to provide
the best interface for a specific platform.

SG14 presents an approach adding an additional std::thread constructors taking a
required_stack_size parameter.

Independently of the portability of this attribute, this proposal prefers to let open the interface for other
attributes and store them in a specific implementation defined class std::thread::attributes .

Some Posix let the user retrieve the value of an attribute Posix.pthreadgetattrnp. On this systems, the user
could check the value of an attribute using the thread native handle.

We could provide a way to get these attributes.

This paper doesn't propose yet an interface to get the attributes, but if there is an interest, we could add a

Design rationale

Why std::thread::attributes implementation
defined?

Single std::thread constructor with a
std::thread::attributes versus specific
std::thread constructors

Checking for thread::attributes value

http://hdeb.clg.qc.ca/WG21/SG14/thread_ctor_stack_size.pdf
http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread_create.html
http://man7.org/linux/man-pages/man3/pthread_getattr_np.3.html

function to the thread class.

thread::current_attributes thread::get_attributes() const;

namespace this_thread {
 thread::current_attributes get_attributes() const;
}

Note that thread::current_attributes would need to be a different class than
thread::attributes as we don't want them to be modifiable.

Note that in such Posix systems, the user can already get the native handle of a std::thread or of the
native handle current thread and get then the attributes.

Returning it by value ensures that the library don't need to store anything in addition to what the platform
stores.

The wording is relative to the C++ standard working draft N4594.

Update Class thread [thread.thread.class] section with

Proposed wording

Thread library

Class thread [thread.thread.class]

http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread_create.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4594.pdf

namespace std {
namespace experimental {
inline namespace concurrency_v3 {

 class thread {
 public:
 // add after id
 class attributes; // implementation defined

 // add after thread constructor
 template <class F, class ...Args>
 explicit thread(attributes const& attr, F&& f, Args&&... args);

 };

}}}

namespace std {
namespace experimental {
inline namespace concurrency_v3 {

class thread::attributes;

}}}

Implementations are free to provide the interface of this class in a non-portable way.

Update thread constructors [thread.thread.constr] adding

template <class F, class ...Args> explicit thread(F&& f, Args&&... args);
template <class F, class ...Args> explicit thread(attributes const&, F&& f, Args&&... args

As before

Remarks: The first overload constructor shall not participate in overload resolution if decay_t<F> is the
same type as std::thread or std::thread::attributes .

Effects: Constructs an object of type thread , taking in account the passed attributes. The first overload
behaves as if a default thread::attributes parameter was passed.

Class thread::attributes

This proposal can be implemented as pure library extension, without any compiler magic support.
Boost.Thread provides it since version 1.51

The authors would like to have an answer to the following points if there is at all an interest in this proposal:

Do we want a way to get the current attributes of a thread?
Do we want this for the IS or for the Concurrent TS?

Thanks to all that commented this proposal helping me to improve the paper as a whole.

Thanks for the feedback from the WG1, making this proposal much simpler.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the
production of this proposal.

N4594 Working Draft, Standard for Programming Language C++ http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2016/n4594.pdf

P0159R0 P0159 - Draft of Technical Specification for C++ Extensions for Concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

SG14 Controlling Thread Stack Size at Creation Time
http://hdeb.clg.qc.ca/WG21/SG14/threadctorstack_size.pdf

Windows CreateThread()
https://msdn.microsoft.com/enus/library/windows/desktop/ms682453%28v=vs.85%29.aspx

Posix pthreadcreate() http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthreadcreate.html

Posix.pthreadgetattrnp pthreadgetattrnp() http://man7.org/linux/man-
pages/man3/pthreadgetattrnp.3.html

Implementability

Open points

Acknowledgements

References

http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4594.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://hdeb.clg.qc.ca/WG21/SG14/thread_ctor_stack_size.pdf
https://msdn.microsoft.com/enus/library/windows/desktop/ms682453%28v=vs.85%29.aspx
http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread_create.html
http://man7.org/linux/man-pages/man3/pthread_getattr_np.3.html

