
Document number: P0318R0

Date: 2016-05-22

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper proposes to introduce two new transformation type traits unwrap_reference and
decay_unwrap associated to the type deduction when reference_wrapper<T> can be used to mean
T& .

1. Introduction
2. Motivation
3. Proposal
4. Design rationale
5. Proposed wording
6. Implementability
7. Open points
8. Acknowledgements
9. References

This paper proposes to introduce two new transformation type traits unwrap_reference and
decay_unwrap associated to the type deduction when reference_wrapper<T> can be used to mean
T& .

There are some places in the standard where we can find wording such as

Returns: pair<V1, V2>(std::forward<T1>(x), std::forward<T2>(y)); where V1 and V2 are

decay_unwrap and unwrap_reference

Table of Contents

Introduction

Motivation

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/utilities/p0318r0.md#references

determined as follows: Let Ui be decay_t<Ti> for each Ti . Then each Vi is X& if Ui equals
reference_wrapper<X> , otherwise Vi is Ui .

The intent is hard to catch and should be described only once as it is the case of DECAY_COPY , e.g.
DECAY_UNWRAP .

In addition the author believes that using these kind of macros when we are able to define them using functions or
traits makes the standard less clear.

Compare the previous wording to

Returns:
pair<decay_unwrap_t<T1>, decay_unwrap_t<T2>>(std::forward<T1>(x), std::forward<T2>(y));

If the traits are not adopted, the author suggest to use DECAY_UNWRAP(T) and define it only once on the
standard.

This trait can already be used in the following cases

[pair.spec] p8
[tuple.creation] p2,3
Concurrent TS P0159R0 make_ready_future

To the knowledge of the author decay_unwrap is used already in HPX, and in Boost.Thread as
deduced_type .

The author plans to use it also in other factory proposals as the ongoing P0338R0 and P0319R0.

We propose to:

add an unwrap_reference type trait that unwraps a reference_wrapper ;
add a decay_unwrap type trait that decay and then unwraps if wrapped.

Having a way to wrap a reference with reference_wrapper needs a way to unwrap it.

decay_unwrap can be defined in function of decay and a unwrap_reference .

It could be seen as an implementation detail, but seems useful.

Proposal

Design rationale

unwrap_reference type trait

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf

decay_unwrap can be considered as an implementation detail as it is equivalent to
unwrap_reference<decay_t<T>> . However, the author find that it makes the wording much simpler.

These changes are entirely based on library extensions and do not require any language features beyond what is
available in C++14.

This wording is relative to N4480.

20.9 Header <functional> synopsis

Change [function.objects], header synopsis, after reference_wrapper

namespace std {
 namespace experimental {
 inline namespace fundamentals_v3 {
 [...]

 template <class T>
 struct unwrap_reference;

 template <class T>
 struct decay_unwrap : unwrap_reference<decay_t<T>> {}

 template <class T>
 using decay_unwrap_t = typename decay_unwrap<T>::type;

 [...]
 }}
}

Add a subsection section

Transformation Type trait unwrap_reference [unwrapref]

template <class T>
struct unwrap_reference;

decay_unwrap type trait

Impact on the standard

Proposed wording

General utilities library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

The member typedef type of unwrap_reference <T> shall equal X& if T equals
reference_wrapper<X> , T otherwise.

20.3.3 Specialized algorithms [pairs.spec]

Replace 8 where V1 and V2 are ... by

where Vi is decay_unwrap.

220.4.2.4 Tuple creation functions [tuple.creation]

Replace 2 Let Ui ... by

Let Ti in Types , then each Vi in VTypes is decay_unwrap_t<Ti> .

If the traits are not adopted, the author suggest to use DECAY_UNWRAP(T) and define it only once on the
standard as we do for DECAY_COPY .

The implementation is really simple

template <class T>
struct unwrap_reference { using type = T; }
template <class T>
struct unwrap_reference<reference_wrapper<T>> { using type = T&; }

template <class T>
struct decay_unwrap : unwrap_reference<decay_t<T>> {}

template <class T>
using decay_unwrap_t = typename decay_unwrap<T>::type;

The authors would like to have an answer to the following points if there is at all an interest in this proposal. Most
of them are bike-shedding about the name of the proposed functions:

If the traits is not adopted, the author suggest to use DECAY_UNWRAP(T) , define it only once on the standard
and adapt [pair.spec] p8 and [tuple.creation] p2,3.

Alternatively

Implementability

Open Points

Do we want a decay_unwrap type trait?

Do we want DECAY_UNWRAP instead?

As what it is really done is to first decay and then unwrap reversing would swapping the two words be better in
English? A better name for decay_unwrap ?

Thanks to Agustín Bergé K-ballo who show me that HPX uses these traits already.

N4480 N4480 - Working Draft, C++ Extensions for Library Fundamentals

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

P0159R0 - Draft of Technical Specification for C++ Extensions for Concurrency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

P0319R0 Adding Emplace Factories for promise/future

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf

P0338R0 - C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

make.impl C++ generic factory - Implementation

https://github.com/viboes/std-make/blob/master/include/experimental/stdmakev1/make.hpp

Boost.Thread http://www.boost.org/doc/libs/1600/doc/html/thread.html

HPX http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html

Should it be named unwrap_decay instead?

Do we want a unwrap_reference ?

Acknowledgements

References

http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0319r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
https://github.com/viboes/std-make/blob/master/include/experimental/std_make_v1/make.hpp
http://www.boost.org/doc/libs/1_60_0/doc/html/thread.html
http://stellar.cct.lsu.edu/files/hpx_0.9.8/html/hpx.html

