
Lambdas in unevaluated contexts

Document #: P0315R1
Date: 2016-08-01
Project: Programming Language C++

Evolution Group
Reply-to: Louis Dionne <ldionne.2@gmail.com>

1 Revision history

• R0 – Initial draft

• R1 – Changed the wording to work around the resolution of [DR1607], which conflicted with
the initial wording. Also address the potential additional concerns raised by this wording
change.

2 Introduction

Lambdas are a very powerful language feature, especially when it comes to using higher-order
algorithms with custom predicates or expressing small, disposable pieces of code. Yet, they suffer
from one important limitation which cripples their usefulness for creative use cases; they can’t
appear in unevaluated contexts. This restriction was originally designed to prevent lambdas from
appearing in signatures, which would have opened a can of worm for mangling because lambdas
are required to have unique types. However, the restriction is much stronger than it needs to be,
and it is indeed possible to achieve the same effect without it, as evidenced by this paper.

3 Motivation

The original use case that motivated this article is related to making algorithms on heterogeneous
containers more useful. For a bit of background, it is possible to implement std-like algorithms
that operate on std::tuples instead of usual, runtime sequences. For example, it is possible to
write an algorithm akin to std::sort, but which works on a std::tuple instead of a runtime
sequence:

// Returns a new tuple whose elements are sorted according to the given

// binary predicate, which must return a boolean ‘std::integral_constant‘.

template <typename ...T, typename Predicate>

auto sort(std::tuple<T...> const& tuple, Predicate const& pred);

The algorithm can then be used as follows:

1

mailto:ldionne.2@gmail.com

auto tuple = std::make_tuple(std::array<int, 5>{}, 1, ’2’, 3.3);

auto sorted = sort(tuple, [](auto const& a, auto const& b) {

return std::integral_constant<bool, sizeof(a) < sizeof(b)>{};

});

// sorted is now a std::tuple<char, int, double, std::array<int, 5>>

While this is a simplified example, it is also possible to define other algorithms like for_each,
transform, accumulate, find_if and many more. This is exploited extensively in the [Boost.Hana]
library, which provides high-level algorithms and data structures to make metaprogramming more
structured.

Where the current proposal meets with the above use case is when one needs the type resulting
from an algorithm exposed above. For example, to get the type of the above tuple without actually
creating the tuple, one would like to simply write

using sorted = decltype(sort(tuple, [](auto const& a, auto const& b) {

return std::integral_constant<bool, sizeof(a) < sizeof(b)>{};

}));

Unfortunately, with the current restriction on lambdas, this is impossible. Instead, one must create
a variable holding the lambda, and then pass this variable to the algorithm:

auto predicate = [](auto const& a, auto const& b) {

return std::integral_constant<bool, sizeof(a) < sizeof(b)>{};

};

using sorted = decltype(sort(tuple, predicate));

Unfortunately, this is both clumsy and not always possible since some contexts do not allow defining
local variables (for example inside a class declaration). Hence, the restriction severly reduces the
usefulness of lambdas in these algorithms. Also note that the issue presented above does not only
arise in the context of manipulating heterogeneous containers. Indeed, one could just as well try
to write the following, only to be puzzled by a compiler error:

std::vector<int> v{1,2,3,4};

using Iterator = decltype(std::find_if(begin(v), end(v), [](int i) {

return i % 2 == 0;

}));

While this is a valid use case, it is expected that using decltype on such a complex expression is
less frequent outside the realm of heterogeneous computations.

Finally, another motivation for this paper is that the restriction is much stronger than it needs to
be, and it prevents lambdas from being used in creative ways, some of which are certainly unknown
to the author of this paper.

4 Proposed Wording

The wording changes introduced in this version of the paper are much greater in scope than that of
the original paper. The reason for this is that we remove many restrictions on lamdba expressions,

2

yet we still want to keep closure types out of the signature of external functions (which would be a
nightmare for implementations). Thus, much of the wording presented below clarifies the standard
to handle possible concerns with closure types sneaking into signatures. The wording is based on
the working paper [N4606]:

1. First, we remove both the restriction that lambda expressions may not appear in unevaluated
contexts and the restrictions added by the resolution of [DR1607], which would otherwise
prevent our use cases. In [expr.prim.lambda] 5.1.2/2 modify the paragraph as follows:

The evaluation of a lambda-expression results in a prvalue temporary (12.2). This
temporary is called the closure object. A lambda-expression shall not appear in an
unevaluated operand (Clause 5), in a template-argument, in an alias-declaration,
in a typedef declaration, or in the declaration of a function or function template
outside its function body and default arguments. [Note: The intention is to pre-
vent lambdas from appearing in a signature. – end note] [Note: A closure object
behaves like a function object (20.9). – end note]

2. With the removal of the above restrictions, a concern is that lambda- expressions might then
be able to appear in the signature of functions with external linkage, which would require
implementations to generate a name for the associated closure type. However, since we
wouldn’t be able to attach to another ABI entity in some cases (such as lambda-expressions
appearing at global scope), that would mean coming up with a mangling scheme that identifies
the closure type from nothing but its own form. This, in turn, would require encoding its
complete definition, which is burdensome for implementations and motivated the original
restrictions on lambda-expressions.

Fortunately, this specific problem can’t arise in the case of non-template functions, even with
the above removal of constraints on lambda-expressions. Indeed, according to [basic.link]
3.5/8, closure types have no linkage, and therefore they cannot appear in the signature of a
function with external linkage (a function is a compound type):

[...] A type is said to have linkage if and only if:
[...]
- it is a compound type (3.9.2) other than a class or enumeration, compounded
exclusively from types that have linkage; or
[...]

However, to make it clear that closure types are never given a name for linkage purposes, we
propose modifying [decl.typedef] 7.1.3/9 as follows:

If the typedef declaration defines an unnamed class (or enum), the first typedef-
name declared by the declaration to be that class type (or enum type) is used to
denote the class type (or enum type) for linkage purposes only (3.5). However, a
closure type is never given a name for linkage purposes. [Example:

typedef struct { } *ps , S; // S is the class name for linkage purposes

typedef decltype([]{}) C; // the closure type has no name for linkage

purposes

– end example]

3

3. Another similar problem is that of lambda-expressions appearing in the signature of function
templates, not by themselves, but indirectly, by being part of an expression which references
a template parameter. Indeed, per [temp.over.link] 14.5.6.1/4:

When an expression that references a template parameter is used in the function
parameter list or the return type in the declaration of a function template, the
expression that references the template parameter is part of the signature of the
function template.

Thus, a function template declaration such as the following will require the implementation
to make the lambda-expression part of the signature, which is specifically what we would like
to avoid:

template <unsigned N>

void f(const char (*s)[([]() { return N; })()]) { }

To make sure this does not happen, we propose amending [temp.over.link] 14.5.6.1/5 as
follows:

Two expressions involving template parameters are considered equivalent if:

1. two function definitions containing the expressions would satisfy the one-definition
rule (3.2), except that the tokens used to name the template parameters may
differ as long as a token used to name a template parameter in one expression
is replaced by another token that names the same template parameter in the
other expression; and

2. for each pair (if any) of corresponding lambda-expressions between the two
expressions:

• the lambda-expressions occur within a function-body , a member-specifica-
tion, or an initializer of an inline variable or a variable templated entity;
and

• each member of the pair is the corresponding counterpart to the other in
the definition of the same entity in different translation units.

Furthermore, if more clarity is desired, the following example could be added after [temp.over.link]
14.5.6.1/5:

// The program is ill-formed, because the two lambda-expressions are

// functionally equivalent but not equivalent.

// a.cc

template <unsigned N>

void foo(const char (*s)[([]() { return N; })()]);

// b.cc

template <unsigned N>

void foo(const char (*s)[([]() { return N; })()]);

4

4. Another possible concern is the appearance of lambda-expressions in contexts that are con-
strained by the ODR. For example:

// a.h:

template <typename T>

int counter() {

static int cnt = 0;

return cnt++;

}

inline int f() {

return counter<decltype([] {})>();

}

// t0.cc:

#include "a.h"

int foo() { return f(); }

// t1.cc:

#include "a.h"

int bar() { return f(); }

Given such code, a question might be whether foo and bar modify the same cnt variable,
since f is defined in a header and it calls counter with a closure type that is supposed to be
unique. However, since f is inline, the resulting program is as-if there was a single definition
of it, and so both functions end up modifying the same cnt variable. This turns out not to
be a problem for implementations, because they must already handle such cases where there
is an ODR context to attach the closure type to. Thus, no wording change is required.

5. A concern with allowing lambda-expressions in declarations is that of dealing with entities
that can be redeclared. However, we feel like no normative change to the wording is required
to address that concern. Indeed, it is already the case that no two lambda-expressions share
the same closure type within a single translation unit. By further clarifying that the lambda-
expressions in alias template specializations are unique to each specialization even if non-
dependent, we conclude the following:

static decltype([] { }) f();

static decltype([] { }) f(); // invalid; return type mismatch

static void g(decltype([] { }) *) { }

static void g(decltype([] { }) *) { }

g(nullptr); // ambiguous

using A = decltype([] { });

static void h(A *);

static void h(A *) { }

h(nullptr); // okay

5

template <typename T>

using B = decltype([] { });

static void i(B<char16_t> *) { }

static void i(B<char32_t> *) { }

i(nullptr); // ambiguous

To make the above interpretation of the standard more obvious, we propose adding the
following paragraph at the end of [temp.alias] 14.5.7:

The type of a lambda expression appearing in an alias template declaration is unique
across instantiations of that alias template, even when the lambda expression is not
dependent. [Example:

template <typename T>

using A = decltype([] {});

// A<int> and A<char> refer to different closure types

– end example]

6. A concern with allowing lambda-expressions outside the body of the declaration of function
templates is the need to evaluate the validity of potentially complex expressions as part of
template argument deduction. Indeed, without clarifying the wording, it is unclear whether
implementations would be expected to support SFINAE based on the validity of the body
of a lambda-expression found in the declaration of a function template. Since this could be
unwieldy for implementations, we choose not to require this in the current paper. Thus, if
a lambda-expression appears inside the declaration of a function template and the body of
that lambda is ill-formed, then the program is ill-formed. To reflect this, we add the following
note after [temp.deduct] 14.8.2/8 (note that the term immediate context is not defined
formally in the standard, which is the subject of [CWG1844]):

[Note: The body of a lambda expression appearing in a function type or a template
parameter is not considered part of the immediate context for the purposes of
template argument deduction. The intent is to avoid requiring implementations to
deal with substitution failure involving arbitrary statements. [Example:

template <typename T>

auto f(T) -> decltype([]() { T::invalid; } ());

void f(...);

f(0); // invalid expression not part of the immediate context, hard error

template <typename T, std::size_t = sizeof([]() { T::invalid; })>

void g(T);

void g(...);

g(0); // invalid expression not part of the immediate context, hard error

template <typename T>

auto h(T) -> decltype([]() -> std::void_t<typename T::invalid> { });

void h(...);

6

h(0); // deduction fails on #1, calls #2

template <typename T>

auto i(T) -> decltype([](){ } (t));

void i(...);

i(0); // deduction fails on #1, calls #2

– end example] – end note]

5 Implementation Experience

This proposal was implemented naively in Clang. The required change is commenting a single line
which creates a diagnostic if a lambda-expression is found inside an unevaluated context.

6 Acknowledgements

Roland Bock and Matt Calabrese for discussing use cases for lambdas in unevaluated contexts on
the std-proposal and Boost.Devel mailing lists. Richard Smith for letting me know that we could
do without the restriction. David Vandervoorde and Hubert Tong for providing extensive guidance
in the second iteration of the wording.

7 References

[Boost.Hana] Louis Dionne, Boost.Hana, A modern metaprogramming library
https://github.com/boostorg/hana

[N4606] Richard Smith, Working Draft, Standard for Programming Language C++
https://github.com/cplusplus/draft/blob/master/papers/n4606.pdf

[DR1607] Daniel Krügler, Lambdas in template parameters
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1607

[CWG1844] Richard Smith, Defining immediate context
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1844

7

https://github.com/boostorg/hana
https://github.com/cplusplus/draft/blob/master/papers/n4606.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1607
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1844

	Revision history
	Introduction
	Motivation
	Proposed Wording
	Implementation Experience
	Acknowledgements
	References

