
Document Number: P0277R0

Date: 2016-02-13

Audience: Evolution Working Group

Reply To: Alan Talbot

 dpp@alantalbot.com

const Inheritance

Abstract

Proposal for const inheritance, a form of inheritance that provides a derived class read-only

access to its base class.

The Problem

In at least one practical scenario, I have found it necessary to protect a base class from

modification by its derived classes. In this scenario, the base class t_format models a user-

specified report format, while the derived class t_report models a report in that format. A report

object supports many operations, such as adding data to itself, displaying itself to a screen, or

saving itself a file. None of its operations should change its user-specified format. This

translates to a requirement that a t_report object should never modify is base t_format object.

It would be useful to enforce this guarantee at compile time.

The existing public, protected and private forms of inheritance are of no help to protect the

base object. Under any of these forms of inheritance, the derived class is free to read and

modify public or protected members of its base class, or to call non-const methods of the base

class within its own non-const methods.

In the above example, one might argue that the proper relationship between t_report and

t_format is a has-a relationship, not an is-a relationship as implemented. This suggests the

solution of changing t_format from a base class to a const member of t_report. There are

practical issues with this solution:

 In the above example, the derived class bears an arguable has-a relationship to its base

class. In other situations, the derived class may have a more obvious is-a relationship to

its base class, in which case changing the base class to a const member of the derived

class is inconsistent with the relationship. The const member solution is not a one-size-

fits-all solution.

 Even if the class relationship is arguably has-a, changing a base class to a const

member in an existing design can involve considerable work. Constructors must change.

Base class accesses within derived classed methods must be changed to member

accesses. Derived class interfaces inherited from the base class must be explicitly

implemented to access the member.

The Solution

In order to protect a base class from modification by a derived class, I propose a const

inheritance mechanism.

 const inheritance is specified by including the const keyword among the base class

specifiers (public, protected, private, virtual) in the derived class declaration.

 The effect of const inheritance on derived classes is as follows:

o There is no effect on visibility of base class members or methods within derived class

constructors. Derived class constructors are free to construct the base class instance

and modify the base class instance within the constructor body as necessary.

o Non-mutable members and non-const methods of the base class are not visible

within derived class methods other than constructors. This prevents modification of

the base class instance via derived class methods post construction.

o Non-mutable members and non-const methods of the base class are not visible in

the public or protected interface of the derived class. This prevents modification of

the base class instance via external calls to derived class methods inherited from the

base class.

 const inheritance propagates recursively downward to derived classes.

 Violations of const inheritance result in compile-time errors.

Examples

// Foo can modify any of its members
class Foo
{
public:

 Foo(int value) : m_value(value), m_count(0) { }

 int get_value() const { return m_value; }
 int get_count() const { return m_count; }

 const int& value() const { return m_value; }
 int& value() { return m_value; }
 int& count() const { return m_count; }

 void set_value(int value) { m_value = value; }
 void set_count(int count) const { m_count = count; }

 int m_value;
 mutable int m_count;
};

// Bar cannot modify its Foo base class instance because of const inheritance
class Bar : public const Foo
{
public:

 Bar(int value) : Foo(value) { } // Good

 int get_value1() const { return m_value; } // Good

 int get_value2() const { return get_value(); } // Good
 int get_value3() const { return value(); } // Good

 int get_count1() const { return m_count; } // Good
 int get_count2() const { return get_count(); } // Good
 int get_count3() const { return value(); } // Good

 void set_value1(int value) { m_value = value; } // Bad
 void set_value2(int value) { set_value(value); } // Bad
 void set_value3(int value) { Foo::value() = value; } // Bad

 void set_count1(int count) const { m_count = count; } // Good
 void set_count2(int count) const { set_count(count); } // Good
 void set_count3(int count) const { Foo::count() = count; } // Good
};

// Awk cannot modify its Foo base class instance, because Bar cannot
class Awk : public Bar
{
public:
 Awk(int value = 0) : Bar(value) { }
};

// Joe can modify its Foo base class instance
class Joe : public virtual Foo
{
public:
 Joe(int value = 0) : Foo(value) { }
};

// Jim cannot modify its Foo base class instance, because of const inheritance
class Jim : public virtual const Foo
{
public:
 Jim(int value = 0) : Foo(value) { }
};

// Jon cannot modify its Foo base class instance, because Jim cannot
class Jon : public Joe, public Jim
{
public:
 Jon(int value = 0) : Foo(value) { }
};

int main()
{
 // Foo can modify any of its members
 Foo foo(123); // Good
 int foo_value = foo.get_value(); // Good
 int foo_count = foo.get_count(); // Good
 foo_value = foo.value(); // Good
 foo_count = foo.count(); // Good
 foo.value() = foo_value; // Good
 foo.count() = foo_count; // Good
 foo.set_value(foo_value); // Good
 foo.set_count(foo_count); // Good
 foo.m_value = foo_value; // Good
 foo.m_count = foo_count; // Good

 // Bar cannot modify its Foo base class instance
 Bar bar(123); // Good
 int bar_value = bar.get_value(); // Good
 int bar_count = bar.get_count(); // Good
 bar_value = bar.value(); // Good
 bar_count = bar.count(); // Good
 bar.value() = bar_value; // Bad
 bar.count() = bar_count; // Good
 bar.set_value(bar_value); // Bad
 bar.set_count(bar_count); // Good
 bar.m_value = bar_value; // Bad
 bar.m_count = bar_count; // Good

 // Awk acts like Bar
 // Joe acts like Foo
 // Jim acts like Bar
 // Jon acts like Bar
}

