
Document Number: P0247R0
Date: 2016-02-12
Proje: ISO SC22/WG21 C++ Standard, Evolution Working Group
Reply to: Nathan Myers nmyers12@bloomberg.net

Criteria for Contra Support

1. Features identified as essential for runtime contra support:

Che expressions may be placed as assertions in funion bodies.

Che expressions may be annotated to identify those that must not normally be
evaluated alongside regular runtime es, because they could violate funion-
contra obligations (particularly performance, but also throwing, allocation, etc.).

auto binary_search(RAIterator b, RAIterator e, Ordered v) -> bool {
 [[assert: b <= e]]; // regular
 [[assert audit: std::is_partitioned(b, e,
 [&v](auto const& v2) { return v2 < v; })]]; // audit check
 ...
 }

[e “audit” seen here is a placeholder for annotating a e not normally evaluated
at runtime.]

Users may sele at build time whi, if any, es are to be evaluated at run time.
Ches evaluated may include regular es only, or both regular and audit es.
E.g.

 $ cc --check-audit -c bsearch.cc # check everything
 $ cc -c bsearch.cc # do not evaluate "audit" checks
 $ cc --check-none -O -c bsearch.cc # check nothing

For implementations that permit linking together TUs built with different seleions
of whi es to evaluate, the standard must not overconstrain whi TU’s
seleion determines whi es must be evaluated at a particular call site.

[I.e.: Ches that annotate an inline funion might be evaluated, or not, according to
the seleion that was made for the TU they get expanded in. Similarly, es
annotating a funion template might be evaluated, or not, according to the seleion
made for the TU where the relevant instantiation lives. But we should not say so,
precisely. Instead, the policy an implementer finds easiest or best favored by
customers implicitly conforms. With modules, we should be able to be more precise.
Note that there is no ambiguity about what a corre program would do.]

Users may provide a funion to call in response to a violated e expression. If no

su funion is provided, the response is to terminate execution as if by abort(). E.g.:

 $ nm handler.o
 00000 t contract_violation_handler(std::source_location const&)
 $ cc -c qualify.o bsearch.o handler.o -o qualify

[As precedent, the standard already enables users to ange core semantics by linking
a distinguished symbol, ::operator new().]

[Link-time specification of the violation response allows the linker of a DLL to give
the DLL its own response to violations on calls into it. More precisely: If a particular
DLL specifies a handler, violations caught in that DLL may invoke that handler,
regardless of what the rest of the program does. Otherwise, if a user specifies a
handler for the main program, violations evoke that handler. Otherwise, the response
is abort().]

e violation-handler funion is passed a std::source_location argument to identify
the calling context (N4529 [reflection.src_loc]).

[N4529 is a TR, and might not be in C++17. If necessary, we must li
reflection.src_loc wholesale from the TR. Implementations are urged to make a
“best effort” to populate the source_location members so as to be useful to
customers, but the standard makes few normative requirements. Recommendation is
to report the site of the call to the funion reporting the violation, not the violated
funion itself.]

If a violation-handler funion returns, execution resumes aer the e.
Implementations may have a build mode in whi returning is not permied.

[As existing code gets instrumented with es, it will tend to pass through a state
where code in produion use provokes violations that must be logged so they can be
identified and fixed. e overwhelming majority of soware development amounts to
adding to or anging existing programs, so success of this feature depends uerly on
the ability to use annotated libraries with existing programs. When the Standard
Library gets so annotated, very few large programs will run to completion with any
kind of eing turned on unless a handler can log the event and continue.]

[Meanwhile, programs proven to not violate preconditions might be made faster by
allowing the compiler to assume the preconditions.]

Response to violations cannot be specified per-e, per-funion, or per-TU. Users
should not consider contra annotations to be a reliable control-flow meanism.

[Per-TU violation response would have many problems. Whi TU aually caught
the violation? It depends on inlining, template instantiation placement. Per-e or
per-funion dispat would make it a control-flow primitive.]

Che expressions are not part of the funion type.

2. Design Notes

We anowledge the desire for declaration-level e annotations. We propose
syntax for this case, by example, using veor<> member operator[], aieving what
at was meant for:

[us:

 reference operator[](size_type pos)
 [[pre: pos < this->size()]] ;

 const_reference operator[](size_type pos)
 [[pre: pos < this->size()]] const;

When a program calling operator[] is built with eing turned on, the value pos
is eed at runtime, and the misuse trapped. When the program is statically
analyzed, any calls that can be proven to violate the precondition (or, even, that
cannot be proven not to violate it) may be noted. When the program is built with
runtime eing off, there is no runtime eing overhead. When operator[] is used
in a constexpr context, a violation is ill-formed, regardless of build parameters.]

An exception (1) thrown from the handler (2) called in response to the violation of (3)
a e expression guarding a noexcept funion (4) results in a call to terminate(),
just like other exceptions thrown from su a funion.

[A straw vote in Kona le lile room for ange here. In any case the caller of a
funion declared noexcept cannot be assumed to be exception-safe at the point of the
call.]

Use of aribute syntax does not imply that the feature is optional. (Other syntax
would be acceptable, but would take a lot of work.)

[Aside from simplifying specification, the major benefit of aribute syntax is that it
provides baward compatibility: Annotated code can still be compiled with older
compilers.]

It would be hard to justify not including, in the funion body, code for es found
in its own declaration. It would be equally hard to justify not running, at the call site,
es seen in the declaration used.

Inheriting es on virtual funions, or requiring that es on base class virtual
interfaces mat overriders does not work:

It is routine for derived-class implementations of a virtual funion interface to
widen preconditions and narrow postconditions, vs. base class interface
requirements. As a consequence, calls through a eed base-class interface
oen would be unable to fully exercise the derived-class implementation.

[E.g., a base-class facility accepts US-ASCII strings to display. e derived
implementation accepts UTF-8.

class Display {
virtual void post_message(std::string_view s)

 [[pre: is_ascii(s)]] = 0;
 };

class XDisplay : public Display {
 ...

void post_message(std::string_view s)
 [[pre: is_utf8(s)]] override;
 };

An instance of XDisplay may, by Liskov substitution, be passed into any
subsystem expeing a Display, and calls there may enforce that messages have
only ASCII encoding. A subsystem that takes an XDisplay reference may be
passed an XDisplay or something else it is mixed into, and su a subsystem can
generate and post ASCII and UTF-8 messages.]

Somewhat less commonly, virtual-funion implementations narrow
requirements vs. the base-class interface, or present more stringent
postconditions, su that static es on the base interface would not
sufficiently e input and output.

[E.g., a base-class facility may accept any file descriptor, while the derived
implementation requires that the file descriptor be non-bloing. e derived
implementation, then, can provide latency guarantees not promised in the base
interface. Clients that don’t know about latency can use the derived facility
through the base-class interface, ignoring the derived implementation’s latency
guarantee.]

Virtual funions are a special case of the more general fa that different points
in the code may see different declarations of what is nominally the same
funion interface. e declaration of a funion template specialization or
overload can express es that would not make sense, or would be entirely
inexpressible, on the base template.

template <typename It, typename T> It find(It b, It e, T const& t);
// Not much can be said about the general template

template <typename T> It find(T const* b, T const* e, T const& t)
 [[pre: b]] [[pre: e]];
 [[pre: !std::less<T const*>{}(e, b)]];

// Given pointers, it is possible to catch certain misuses.]

template <typename T, typename Container>

struct Wrap {
 Container c;
 T& operator[](size_t pos); // nothing to say
 };

template <typename T, size_t N>
 T& Wrap<T (&)[N]>::operator[](size_t pos) [[pre: pos < N]];

Evaluating some es twice seems tolerable and in general not avoidable, but an
optimizer could oen elide the extras if it maered.

It is impossible, in general, to determine whether one set of es subsumes another.
(It is even triy to say whether es on two declarations are the same; name
binding in the expressions may differ, although we have ODR weasel-wording for
that.) Praically, we cannot assume any relationship between es on declarations
of not-precisely-the-same funion.

Che aributes on funion pointers (including funion pointers as arguments)
should be bound (like a storage class) to the obje, not the type or the value.
Example:

void set_callback(bool (*cb)(int a, int b) [[pre: a < b]])
 [[pre: cb != 0]];

Effes on stable ABIs of the semantics proposed are not immediately obvious. We
need review by implementers who have ABI constraints.

Code that would cause a e expression to evaluate to false in a constexpr context
should be treated as ill-formed, regardless of build mode. Failing a constexpr e
expression should not be taken as substitution failure. Important questions: Must all
the e expressions on a constexpr funion be, themselves, constexpr? I.e., should
having a non-constexpr e expression keep the funion it is on from being used in
a constexpr? Should a e expression with indeterminate value affe whether a
program is well-formed?

Che expressions, when evaluated, can themselves violate es on any funions
they call. is does not appear to cause any problems.

Assertions in member-initializer-lists raise awkward questions that may reasonably
be considered later. e problem is that to be most useful, assertions should be
allowed between subobje initializers, and be allowed use the value of previously
initialized subobjes. However, subobjes can be initialized in a different order than
they appear lexically. E.g.,

struct A {
 B m_b, m_bb, m_bbb;

template <typename T> B(int i, int j)

 : m_bbb{}, [[assert m_b.ok()]] m_bb(m_b), m_b(i, j) {}
 };

To use e expressions as guarantees to the optimizer (i.e. “an assertion that is not
evaluated but would evaluate to false is UB”) would introduce difficult complications.
E.g., re-using the previous example:

auto binary_search(RAIterator b, RAIterator e, Ordered v) -> bool {
 [[assert audit: std::is_partitioned(b, e,
 [v](Value v2) { return v2 < v; })]]; // A
 [[assert: b <= e]]; // B

while (b < e) {
 [[assert: *b <= *e || v < *b || *e < v]] // C
 ...
 }
 }

Above, assume the compiler is configured so that A is assumed, not eed, and that
B and C are to be eed at runtime.

Che A has defined behavior only if B is true, so, as normally implemented, an
optimizer would be justified in eliding B.

A clever enough optimizer could deduce that A implies C, and elide that too.

Interaions with optimization have complicated effes even without treating e
expressions as assumed.

[Forbidding the optimizer from deducing that an evaluated assertion is true seems to
have unfortunate consequences. E.g., it seems to forbid

any optimization in a e expression
eliding code leading to an assertion, based on implications of code that follows it
using su implications to optimize that code

It is hard to know now to know how to express su a prohibition.

Preconditions are not proof against these concerns; a precondition on an inlined
funion is equivalent, for this purpose, to an assertion in the caller. Nested inlines
model nested local blos.]

