
Document Number: P0230R0
Date: 2016-02-12
Authors: Michael Wong
Project: Programming Language C++, SG14 Games Dev/Low Latency/Financial
Trading/Banking
Reply to: Michael Wong <fraggamuffin@gmail.com>

SG14: Games Dev/Low Latency/Financial
Trading/Banking Meeting Minutes 2015/10/14-
2015/02/10

Contents
Minutes for 2015/10/14 SG14 Conference Call ... 2

Minutes for 2015/11/11 SG14 Conference Call ... 7

Minutes for 2015/12/09 SG14 Conference Call ... 10

Minutes for 2016/01/13 SG14 Conference Call ... 15

Minutes for 2016/01/20 SG14 Conference Call ... 24

Minutes for 2016/02/03 SG14 Conference Call ... 26

Minutes for 2016/02/10 SG14 Conference Call ... 35

Minutes for 2015/10/14 SG14 Conference Call

Meeting minutes by Michael

1.1 Roll call of participants

Guy Davidson, John McFarlane, Brett Serles, vishal oza, sunil sricastava, Brent Friendman,
Michael B. McLaughlin, Niolas G, Sean M, Billy Baker, Michael Wong, Ville,

1.2 Adopt agenda
Approve.

1.3 Approve minutes from previous meeting, and approve publishing previously approved
minutes to ISOCPP.org

Approve.

1.4 Review action items from previous meeting (5 min)

1.4.1. All: Consider attending Kona Meeting in Oct 19-24, 2015.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4544.htm

1.4.2. All: consider attending SG14 meeting at GDC 2016, March 14-18 hosted by SONY

2. Main issues (50 min)

2.1 Review SG14 logistics, discuss CPPCON report, C++ Standard meetings , C++ Kona
mailing deadline (Sept 25)

Please see the slides for the report here which was presented in the Friday session by Sean and
Nicolas which also outlines the problem domain, our motivation as well as the status of the
discussion.

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2015%2Fn4544.htm&sa=D&sntz=1&usg=AFQjCNHzlawfHoQDu9FIGa7u32zaMdu-6w�

The Birth of SG14
https://docs.google.com/presentation/d/19iM3VIa24bStFHQwgniSO1J4vQjHR8curjOt6j3Liz8/e
dit#slide=id.g66ea100d2_0_58

Please ask John Spicer for document number.
And send John Spicer the actual document.
jhs@edg.com

2.2 Kona Papers and their presenters. We won't have time to discuss in detail, but we can go over
major questions and seek opinions and feedbacks, logistics, and how to prepare the paper for the
SG14 deadline.

We have 8 papers upstreamed from the meeting for Kona
P0037R0 Fixed point real numbers John McFarlane LEWG SG14/SG6: Lawrence Crowl
P0038R0 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy
P0039R0 Extending raw_storage_iterator Brent Friedman LEWG SG14: Billy Baker
P0040R0 Extending memory management tools Brent Friedman LEWG SG14: Billy Baker
P0041R0 Unstable remove algorithms Brent Friedman LEWG SG14: Billy Baker
P0048R0 Games Dev/Low Latency/Financial Trading/Banking Meeting Minutes 2015/08/12-
2015/09/23 Michael Wong SG14: none
P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael

has an update D0059R1

P0130R0 Comparing virtual functions Scott Wardle, Roberto Parolin EWG SG14: Michael

motivation? goal to instruct instruction cache usage, vector of polymorphic objects such that you
can call the same vfuncs over and over again
branch predictor cannot help.

P0125R0 std::bitset inclusion test methods: Michael/Walter

2.3 Exception handling brainstorm

https://docs.google.com/presentation/d/19iM3VIa24bStFHQwgniSO1J4vQjHR8curjOt6j3Liz8/edit#slide=id.g66ea100d2_0_58�
https://docs.google.com/presentation/d/19iM3VIa24bStFHQwgniSO1J4vQjHR8curjOt6j3Liz8/edit#slide=id.g66ea100d2_0_58�
mailto:jhs@edg.com�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0039r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0040r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0041r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0048r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0130r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0125r0.html�

We had a major brain storm on why games programmers tends to turn off exception handling,
and a brain storm session to see what kind of options and ideas to address their concerns.

We intend to bring to discussion in addition to Exception/RTTI costs, topics regarding the
following, some of which crosses into other groups such as SG1 Concurrency, SG6 Numerics
and SG7 Reflections.

Wwednesday evening session on SG14
Sean:
1. make noexcept the default but still allow exceptions to be enabled
allows games an easy way to not mark up every single function every class
its just a compiler optimization
hoops to jump through

2. function decoration to assert non-throwing-ness
unlike noexcept, but still allows exception to be passed but have no unwinding information
exceptions are rare and will crash anyway

3. more in language alternative, mark a namespace or modules as noexcept, to get developers to
keep exception off, and still allow to use STL, bringing more developers to Standard C++

Vishal: allow an opt in way of generating exception info only when needed
Sean: still need compat with C and older C++
Vishal: do it on the linker stage or LTO
, undefined behaviour
delayed to link time compiler would have to generate multiple versions, longer compile time, and
larger space

People are sending me snippets of their brainstorm. Please continue to post to this list. Thanks.

2.4 Other papers from the mailing of interest to SG14

There are a few papers in the current mailing that is of interest to SG14.

GPU Accelerator support
P0069R0 A C++ Compiler for Heterogeneous Computing

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0069r0.pdf�

We actually intend to study the design of C++AMP, OpenMP Accelerator/OpenACC, OpenCL,
OpenGL and Vulcan, Diectx12 for a GPU accelerator design to support gamers. We plan to
review this paper under a co-located SG14 session which can run with SG1, but we are interested
in taking this work further.
Michael Wong, rasha
Allocators
P0089R0 Quantifying Memory-Allocation Strategies
Guy interested
Get Andrey
Coroutines and games
a lot of compiler magic, can't predict very reasonably how it behaves due to multiple platforms
support
P0054R0 Coroutines: reports from the fields
P0055R0 On Interactions Between Coroutines and Networking Library
P0070R0 Coroutines: Return Before Await
P0071R0 Coroutines: Keyword alternatives
P0073R0 On unifying the coroutines and resumable functions proposals
P0099R0 A low-level API for stackful context switching
Intrusive containers

likely/unlikely

function multiversioning

low latency for financial/trading

matrix operations

SIMD vectors
P0076R0 Vector and Wavefront Policies
2 competing problem space:
1. getting high performance SIMD: ISPC
2. standard communication between library with simple geometric types:

Reflection

Numerics:
P0106R0 C++ Binary Fixed-Point Arithmetic

String:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0067r0.html
Sean
3. Any other business

4. Review

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0089r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0054r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0055r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0070r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0071r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0073r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0099r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0076r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0106r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0067r0.html�

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft]

4.2 Review action items (5 min)

5. Closing process

5.1 Establish next agenda

5.2 Future meeting
Next meeting: Kona Std meeting (no telecon)
Next call : Nov 11 coroutines
Nov 25: SIMD

• Aug 12: First call
• Sept 9: Before CPPCon call, review whats been discussed on the reflector
• Sept 11: SG14 CPPCon mailing deadline
• Sept 23: SG14 F2F at CPPCon
• Sept 25: C++ Kona meeting Mailing Deadline
• Oct 14: SG14 monthly telecon
• Nov 11: SG14 monthly telecon/Gor on coroutines

Nov 25: SG14 special telecon/Pablo and Xinmin on SIMD

• Dec 9: SG14 monthly telecon/ Andrey on Allocators

http://wiki.edg.com/twiki/bin/edit/Wg21kona2015/F2F?topicparent=Wg21kona2015.CPPCon2015SG14Meeting2015-09-23;nowysiwyg=1�

Minutes for 2015/11/11 SG14 Conference Call

Meeting minutes by Michael

1.1 Roll call of participants

Please add your name here
Michael Wong

1.2 Adopt agenda
Yes

1.3 Approve minutes from previous meeting, and approve publishing previously approved
minutes to ISOCPP.org

Yes

1.4 Review action items from previous meeting (5 min)
1.4.1. All: Consider attending SG14 F2F meeting hosted by SONY at GDC 2016
Tentative: Tuesday March 15 and/or Wednesday March 16
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Euo2So0kYew

1.4.2. All: Consider attending Jacksonville Fl, C++ Std meeting Feb 29-Mar 5.

2. Main issues (50 min)

2.1 Review SG14 logistics, for upcoming telecons and meetings: 5 min
New papers for the next C++ Standard meeting in Jacksonville should be named PxxxxRyy
advancing the revision to the next number.
We use DxxxxRyy only for papers that we plan to discuss in a special SG14 meeting, which will
be changed to a P paper when published officially for WG21 Meeting mailings.

WG21 Meeting Mailings deadlines are:
Feb 12 for the pre-meeting mailing

Current logistics is to focus on revised papers of the papers we presented in Kona for the
Jacksonville meeting, reserving any new papers for the SG14 GDC meeting. Of course, new
papers can still be accepted for Jacksonville if someone is heavily motivated to work on it in the
short time frame we have (which is only about 3-4 telecon calls).

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�

the papers presented at GDC will be presented in June at the Oolu Finland meeting in June.

We are still waiting on SONY to confirm details of the SG14 GDC meeting. No update yet.

2.2. Coroutine and Games (Gor): 30 min
Gor presented with notes he emailed just before the call. Thank you Gor.
https://11950069482448417429.googlegroups.com/attach/44f49f1fe5dde/D0XXX_CoroutinesA
ndGames.html?part=0.1&view=1&vt=ANaJVrH5dxD1W4lGefIqQEFOY6_Afct_SdXqXw9Zsr
MaBWCoTNOpBTUWTh5Ir1vWfGnqKdiQdpKPg_IGjWmP2T4Yxq_fQv44QVc2K3QfdxTuA
-DDpbbRvFM
Questions and issues?

2.2 Review proposals results from Kona: 15 min
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/-Dw-jYbhlAc

We won't have time to discuss in detail, but we can go over major questions and seek opinions
and feedbacks

P0037R0 Fixed point real numbers John McFarlane LEWG SG14/SG6: Lawrence Crowl
John has an implementation and this helps. Lawrence will try to work on one for Jacksonville so
that a meaningful comparison can be made, otherwise John's approach would be favored.

P0038R0 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy
Proceeding well with some edits. Please prepare an updated paper.
P0039R0 Extending raw_storage_iterator Brent Friedman LEWG SG14: Billy Baker
P0040R0 Extending memory management tools Brent Friedman LEWG SG14: Billy Baker
P0041R0 Unstable remove algorithms Brent Friedman LEWG SG14: Billy Baker
P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael
Arthur O'Dwyer is interested in a merging of his proposal and this one. Please work with him.
P0130R0 Comparing virtual functions Scott Wardle, Roberto Parolin EWG SG14: Michael
P0125R0 std::bitset inclusion test methods: Michael/Walter

2.3 Ongoing topics placeholder (which we won't likely get to but will schedule)
Exceptions/RTTI
SIMD vector and Matrixes
Allocators
GPU/Accelerator design
Given the GPU presentation in Kona from AMD's HCC, I would like to add this now to the
schedule for discussion.
Array View and Bounds checking

3. Any other business

4. Review

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/-Dw-jYbhlAc�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0039r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0040r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0041r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0130r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0125r0.html�

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft]

4.2 Review action items (5 min)

5. Closing process

5.1 Establish next agenda

5.2 Future meeting
Next call : Dec 9
(I decided to not hold extra meetings in Nov as many people are busy with delivery)

Nov 11: coroutines and games
Dec 9: review committee decisions
Jan 13: more paper discussions, review SIMD?
Feb 10: prep for Jacksonville WG21 meeting
Feb 12: pre-meeting mailing deadline
Feb 29-March 5: Jacksonville, Fl; WG21 meeting
March 4: Pre-GDC SG14 mailing deadline
Mar 15/16: GDC SG14 meeting

Minutes for 2015/12/09 SG14 Conference Call

Minutes by Michael Wong
Michael Wong, Guy Davidson, Sean Middleditch, Hartmut Kaiser, brent Styles, Scott
wardle, Jared Hoberrock, Mike Garland, Al Grant, Billy Baker, Rosha O, Nicolas G,
Matt, John mcgluaghin,

1.2 Adopt agenda
Yes

1.3 Approve minutes from previous meeting, and approve publishing previously
approved minutes to ISOCPP.org
yes

1.4 Review action items from previous meeting (5 min)
1.4.1. All: Consider attending SG14 F2F meeting hosted by SONY at GDC 2016
Tentative: Tuesday March 15 and/or Wednesday March 16
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Euo2So0kYew

1.4.2. All: Consider attending Jacksonville Fl, C++ Std meeting Feb 29-Mar 5.

2. Main issues (50 min)

2.1 Review SG14 logistics, for upcoming telecons and meetings: 5 min

To make C++17, proposals must be approved in the next 2 meetings.

2.2. Accelerator design using Nvidia's Agency (Jared Hoberrock) : 40 min
https://github.com/jaredhoberock/agency/wiki/Quick-Start-Guide

Jared and Mike G presenting sldies
Slide 2: bulk_invoke
Bulk synchronous parallelism: just fork join, valient 1990 paper
https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
std::invoke like
par
invocations are not in order with each other, in parallel,
2nd arg is just parallel agent a handle to an execution agent

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�
https://github.com/jaredhoberock/agency/wiki/Quick-Start-Guide�
https://en.wikipedia.org/wiki/Bulk_synchronous_parallel�

take self parameter and ask it for its index, use to identify and do arithmetic
after we call bulk invoke it is a synchronous call,
n is the number of agent inside par
slide 3:
still experimental at this stage
manipulating execution agents
abstract mapping to underlying platforms, whether threads, GPUs, simd units,

no guar of performance; agency does not prevent programmer write low level
architecture specific code
I usually write to prevent pathological cases

slide 6: structured execution
matches C++ Std
work placement: where execution happens
slide 7
Vision for parallelism
borrowed executor idea from standardization
ex agents are basic units of work
futures for dependencies
slide 8: .then, when any, when_all, tools concurrency
executors: tools for low level work creation
agency is a bridge high level algorithms with low level work creation of executors
slide 9:
bulk_invoke sync with caller (caller must wait until all ex agents finish)
sometimes want async
bulk_async: a massive form of std::async
today, you need to nest a for loop inside a call to std::aysnc
or call std::aysnc inside each array element
inefficient to create a new thread for each array element, this is better
this returns a future, so dont have to wait for the saxpy to finish
slide 11:
further generalize bulk_async to bulk_then
can line up a continuation and allow it to execute in bulk
this saxy is not allowed to exec until the future is satisfied
Hartmut Q? just a guar that the code in the lambda can run concurrently; currently only
used for fork-join parallelism only
allowed to run concurrently with itself
now it means the lambda can run concurrently with any other code in addition to itself
A: par is saying in slide 9/10/11 is that when u create this group of agents, they run with
no order with any agent in the group
arbitrary exec in any order in any thread, but parallelism TS is only for fork-join
Hartmut: now bulk_async returns a future, it implcitly allows the lambda execution with
any other code
HPX has solved issue:
Mike G: this entails a semantic change from parallelism TS: around any call in the TS,

you can inject other calls, this world has agents in the loop to run along with other things;
this relaxes it but does not change semantics of par
slide 12:
Jared: why bother with exec agents?
now allow us to encode ordering semantics of lambda and get niceties like overloading
can compose agent local storage; stash states instead of TLS
type system allows us to specialize
Q ?: pipeline parallelism allowed? any interagent communication?
Yes in a few slides
slide 13:define sequential agent
category: seq, par?
index: multi dimension
group_size: shape
slide 14: parallel agent
slide 15: clusters, nodes, sockets, cores, lanes hierarchy emerge naturally
so our code is structured to match that hierarchy
expose that hierarchy to match mapping to hardware
slide 16: so this by nesting par(2, seq(2))
results in the indices which become tuples from 0.,0 to 1,1
slide 17:
nested policy to create a nested hierarchy for matrix transpose
slide 18:
how agency exposes concurrency
concurrent_agent adds wait function (barrier)
slide 19: now can optimize matrix transpose
common to use onchip memory to acclerate program
added new argument share(tile)
instructs bulk_invoke to create a opy of arg per group of agent
take the input and copy into this shared tile buffer, wait for the copy to complete with the
barrrier fn,
then do the transpose, and then copy it back out to the scratch pad
.wait synchronizes
slide 20: reduction
reduce done in a recursive way
traverse hierarchy of machine with nested execution
slide 21:
when writing this reduction, can ignore the number of core, simd width, only think about
hierarchical information
slide 22:
executors is lowest level api for agency, like allocators for exec agent
agency model for locality: when u tell it to create some work, know how to allocate
memory, where to exec
a customization point, bulk_invoke manipulates them for users
slide 23: first exposes exec category; advertize its semantics
just exec a fn in a for loop
slide 24: place work on an executor: cpu_executor

bulk_invoke with .on will send it to cpu executor
compose work placement with algorithm
Slide 25: for gpus
has a CUDA lambda
now we can send it to gpu_executor or multigpu executor
slide 26: can get fancy
nest exec in one in the other and create a hierarchy on the fly
flattened takes a nested executor and reindex to be flat
exec_array: multiple GPU and make an array of them; without making individual calls to
each gpu
slide 27:
take all this compose to make a parallel executor
nesting can cause the ... to insert a for loop
a simple flat executor whose agents exec in parallel
side 28:
more ideas
vectorize
customization point to introduce new platforms
slide 29: summary
control structures create lots of parallelism on mass
exec policies parameterize the control structures
exe agents: param lambdas
exe: doles out work; interact underlying platform

Q: to use agency to paralleize work, pop command from the queue to go towards gpu or
cpu
A: dont think so; that queue of work can be stashed inside an executor, gpu executor that
submits item to the queue, a user defined queue can compose with agency by writing a
special kind of executor and mix it in
Q: I am thinking a task queue to a cloud based system or gpu and cpu
abstracting the actual work item so it can be put in the actual device
Q: memory model is a major issue for sharedness or discrete
A: agency can have a preferred allocator
Q: how to split code between gpu and cpu
A: a compiler that takes a function that can generate code that can go to cpu or gpu thread
decision can be made at compiler time or link time discussion
Q: allocator with interkernel communication like nvidia kepler, also AMD GPUs FIFO
pipes in opencl/fpga
A: 2 ways that 2 kernels can communicate:1. one consume the result of another using
continuation,
2. if 2 kernels exec concurrently, then they communicate memory

Thank you to Jared and Michael !

- show quoted text -
Dec 9: review Nvidia's Agency with Jared Hoberrock

Jan 20: more paper discussions, review HCC
Feb 10: prep for Jacksonville WG21 meeting
Feb 12: pre-meeting mailing deadline
Feb 29-March 5: Jacksonville, Fl; WG21 meeting
March 4: Pre-GDC SG14 mailing deadline
Mar 15/16: GDC SG14 meeting

Minutes for 2016/01/13 SG14 Conference Call

Minutes by Michael Wong
1.1 Roll call of participants
about 21-22 people; some of them are:

Michael Wong, Pablo Halpern, Jen Maurer, Brett Searle, Sean Middleditch, Jared Hoberock, Al
Grant, Robert Geva, Harmut Kaiser, Ben Sander, JF Bastien and Hans, Michael Garland, Brett
feidman,Sunil from Sony, Scott Wardle, Paul Mckenny, Olivier Giroux

1.2 Adopt agenda

Add item for JF's overview

1.3 Approve minutes from previous meeting, and approve publishing previously
approved minutes to ISOCPP.org

Approved.

1.4 Review action items from previous meeting (5 min)
1.4.1. All: Consider attending SG14 F2F meeting hosted by SONY at GDC 2016
Tentative: Tuesday March 15 and/or Wednesday March 16
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Euo2So0kYe
w

1.4.2. All: Consider attending Jacksonville Fl, C++ Std meeting Feb 29-Mar 5.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf

2. Main issues (125 min)

2.1 Review SG14/SG1 logistics, for upcoming telecons and meetings: 5 min
 JF. Bastien gave an overview on current status of user-aided vector programming:
https://docs.google.com/document/d/1pzp-
vEjDgI7UoHfhy10MU2tclX3Omz8oVRYLg9LlKEY/
This is a snapshot for today
for compilers, internal of compilers are quite ugly
want implementation and standardize practiced
Will send out paper in the next few days.

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�
https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf�
https://docs.google.com/document/d/1pzp-vEjDgI7UoHfhy10MU2tclX3Omz8oVRYLg9LlKEY/�
https://docs.google.com/document/d/1pzp-vEjDgI7UoHfhy10MU2tclX3Omz8oVRYLg9LlKEY/�

2.2. Intel Vector SIMD proposal : Pablo Halpern 90 min.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0076r0.pdf
Suggest we also include discussion on Implicit vs Explicit Wavefront issues
Slides sent before meeting. Thank you Pablo.

Pablo Presenting
This is the high level proposal, a seperate proposal on type
acquire mutex in multiple lanes, can get race condition
so synchronization is limited
Slide 4: current TS missing VEC
5: missing indexed based loop, can generate it but that obfuscates the code, and opaque to the
compiler as well
as close as possible to something that looks like a control construct
6. in the if statement, it prematurely returns from lambda, this is like a continue, skips the rest of
this iteration, and go on to the next iteration; body of the loop is the continuation
7. now add induction vars; vars that move in sync with the main vars
jv (arg to lambda starts out with 0 or j) advanced by 2 , iteration are happening in parallel, so
could have reused jv again, this is the linear induction
at the end, the for loop writes back to the induction
Robert G: can also have geometric induction using x*=4; proposal only have linear ones for built
in ones
8: reductions are critical too, want the sum is closely related and same as sum outside the loop
but inside the loop is a partial sum, some value which is not useful yet, but you keep adding to it
with local prtial sums; min and max possible
9.can have user defined reduction types, using classes/types and starting value for the initializer;
the identity
; requires associativity, but not communitivity
not commutative will maintain order and can do string and list
must have associativity, but may or many not need commutative
10: moving on to the bigger picture on the execution policies
unseq is a single threaded version of par vec
its mathematically parallel; no interdependency between the iterations at all
it differs from parallel in that it has restrictions from different iterations of the loops
as long as there is no mutex or atomics, then unseq can be more efficient then par, especially in
small loops
can avoid some kinds of races,
the most interesting is VEC, vector execution policy
gets you classic vector loop execution
applies only to for loop and for loop strided
ordering between different iterations of the same loop
if it is a sort, you don't know the order of callback function, so can't take advantage of any vector
ordering
having some kind of meaning on dependency is silly
for each i the logical one

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0076r0.pdf�

Robert: transform is another logical one

Par_vec is the most restrictive on programmer, avoid races and synchronization

(Hans: does not prohibit synchronization inside functions, same for unseq and vec side;

If you are spinning on same lock, you are ok

If different lanes each acquire different mutexes, you are ok

Par_vec implementation will treat as sequential code if it sees synchronization

Now you may need to specify which library functions is allowed,

AI: will add action item for future SG1 on above)

Par side allows to synchronization, but cannot make any assumption on order of evaluation or
how many threads

Unseq-vec side allows assumption on order of evaluation on iterations, but not allowed to make
synchronizations between iterations

11.unseq works with anything

Vec supports different architecture

12. Long machines have a pipeline and arith unit that gets reused, at the same time as maincode
moves onto next instructions

Before finished a(0), can start on a(10, and when A(0) is finished, it moves onto B(0) on long
pipeline vector machines

Some of the length can be arbitrary

Modern uses wide registers that hold more then one val at a time, and they can do multiple step
at once in predecided chunks

Can get 2x more floats and doubles in these registers

Difference between this and the vector data proposal, loops hide this and treats each partial
register as a separate lane

If a(0), a(2) grabs the same mutex at once, likely deadlock, hence avoid synchronization is
important1

13. can do software pipelining

Can begin issuing b(0) until a(0) is done; can begin issuing a(2) while a(0) is starting

Can handle a again because instruction is freed up

Can before the next iteration before end of current iteration

14.what is in common, and what we can capitalize

Wavefront

Which is a sequence of instructions and guarantees

A somewhat predictable wavefront, no earlier application can fall behind a later application

You enabled forward dependencies for vectorizable code, and auto-vectorizable code

P0076r0 rules is complex, and being simplified

15. upper left to lower right

B(0) and a(10 can be simultaneous

Such that there is a wavefront that propagates through the instructions

16. similarly

May or may not be be instruction ordering

But still a wavefront that can propagate

Slanted because there is still an implicit order for some arhcitectures

Are writes to memory going to be ordered? Not clear? AVX and SSE do write in order, so
always get the last write

If they A(0) and a(1) writes to the same memory location, then a(1) wins because of the alsnt

17. software pipelining also has this slanted wavefront

Moving from corner to corner

Al Grant asked:

? Is it expected there will be one with ordering and one without?

Unseq is without

And vec has ordering

?within vec mode?

Yes SG1 needs to decide on this

If loading from unrelated thread?

No that will be undefined and is a race

Even an atomic load?an atomic racing with it

2 different lanes reading from the same location

Sequencing across thread, leave as unspecified

Bottom case, no way to get reasonable results

Has w before r dependency, so wavefront propagation is not good enough, so must be done
sequentially

19. can turn off vectorization for regions of loop

No concurrency no vectorization at all

A way to do compress, cannot do it concurrently without a race

The entire vec_off construct is treated executing left to right

20. a policy that derives from vector execution policy, that compiler can understand

Can pass to for loop

One way to add tuning parameters

Some can standardize: safelength (This is actually a semantic constraint)

Mechanism is standardized, the specific tuning parameters is portable

21. future has the histogram pattern of incrementing value inside an array with race

Or compress expand pattern, cant just index off control variables

22. because we don’t really know how to specify it for others, but may be in time

23. summary

Main controversial points:

1. Whether wavefront should be implicit or explicit

Slide 18: whether the relation between the first and second line should be implicit

Whether v[i] when written when v[i-1] has been seen

Do we need some annotation to ensure that

Offline discussions in Silicon Valley, is that in history this stuff works without annotation,
compiler can figure them out

1. So implicit Wavefronts; explicit in that you have created vec policy

2. Order of writes: similar to histogram problem, slide 21, if instead of ++, it is = some
expression

And if b[i] is not unique, should it be defined behavior such that latest in sequential ordereing
should win; seem to be a corner case, Intel:last one wins; nvidia checked and say their hardware
does not do that

Olivier: discussion off email list mostly talked about implicit vs explicit; there was wording for
an explicit version, have an idea how to specify it, in the end; decided that continue forward
implicit wavefront

Explicit wavefront wording opens door for another method, but hasn’t been done yet

ON the racy store issue , still checking with nvidia hardware

Want us to put out spec that fits in well with Parallelism TS and Torvalds forward progress and
apparent scalar thread of control and scalar lock of C++, also library functions restrictions

Brent: games care about data alignment; vector data type proposal probably has it

Anyway to deal with that issue separately

Clark’s paper? Ability to specify that the data is aligned in a type is already in C++11

Can you do that with arbitrary pointer

Can create a local or static duration object of any alignment you want, but not heap allocated
data

P0035r0 is Clark/Pablo paper that address that

No way to standardize a way to specify vector alignment, you just have to know

Robert: how to allocate memory such that its aligned?

It’s the allocating the memory that is specified

Don’t know a way to say to compiler that this is already aligned, should say that as well

Robert: also laying a classes as a formal structure of arrays vs array of structures

Also requires some communicating of the alignment stuff

SIMD uses SOA: can gain more performance

Sean M: How much template logic goes into these libraries; what kind of impact on compiler
time

Pablo: will try to answer

To get vectorization, can not just do it with compiler independent code, needs pragma or
instrinsics to identify the code

That can be done at a high level.

Compiler can recognize the for loop, as a vector loop, and do vector inside

Or use OpenMP pragmas and have template magic to translate them

Ok should not be any slower

Sean: not convinced; no pressure on compiler vendors will have no compile time effect

JF: clang wants to fix both compile and execution time aspects

Robert: modern compiler on OpenMP side, and the more they challenge the compiler to do more; from
code generation persective, we are proposing template;

2.2 Review proposals results from Kona: 20 min
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/-Dw-jYbhlAc

We won't have time to discuss in detail, but we can go over major questions and seek
opinions and feedbacks

P0037R0 Fixed point real numbers John McFarlane LEWG SG14/SG6: Lawrence

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/-Dw-jYbhlAc�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�

Crowl
P0038R0
getting benchmark work
initial draft to add container

 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy

P0039R0 Extending raw_storage_iterator Brent Friedman LEWG SG14: Billy Baker
dropped
P0040R0 Extending memory management tools Brent Friedman LEWG SG14: Billy
Baker
updated; most interested in; going to LWG
P0041R0 Unstable remove algorithms Brent Friedman LEWG SG14: Billy Baker
rejected due to lack of motivation
rewritten with better motivation
P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael
P0130R0

Scott Wardle: can go to game dev; finish first paper on virtual function comparisons

 Comparing virtual functions Scott Wardle, Roberto Parolin EWG SG14:
Michael

P0125R0 std::bitset inclusion test methods: Michael/Walter

2.3 Ongoing topics placeholder (which we won't likely get to but will schedule)
Exceptions/RTTI
SIMD vector and Matrixes
Allocators
GPU/Accelerator design
Array View and Bounds checking

3. Any other business

4. Review

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft]

4.2 Review action items (5 min)

5. Closing process

5.1 Establish next agenda
AMD's Heterogeneous Compute Compiler
+HSA research into latency effect for discrete and integrated GPU

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0039r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0040r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0041r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0130r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0125r0.html�

5.2 Future meeting
Next call : Jan 20: 2 hours

Dec 9: Nvidia's Agency With Jared and Mike Garland - DONE
Jan 13: 1st vector/SIMD call - 2 hours: Archie/Pablo- DONE

Jan 20: AMD's HCC compiler with Ben Sander & HSA research
Jan 27: 2nd vector/SIMD call- 2 hours:Matthias proposal? Other proposal?
Feb 3: LSU's HPX runtime with Hartmut Kaiser
Feb 10: possibly 3rd vector/simd call: Other proposal?
Feb 17: Khronos' OpenCL C++ SYCL with Andrew Richards

Minutes for 2016/01/20 SG14 Conference Call

Minutes by Michael

- hide quoted text -

2.3 HSA's research: 45 minutes

2.4 Review proposals results from Kona: 20 min
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/-Dw-jYbhlAc

We won't have time to discuss in detail, but we can go over major questions and seek
opinions and feedbacks

P0037R0 Fixed point real numbers John McFarlane LEWG SG14/SG6: Lawrence
Crowl
P0038R0 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy
P0039R0 Extending raw_storage_iterator Brent Friedman LEWG SG14: Billy Baker
P0040R0 Extending memory management tools Brent Friedman LEWG SG14: Billy
Baker
P0041R0 Unstable remove algorithms Brent Friedman LEWG SG14: Billy Baker
P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael
P0130R0 Comparing virtual functions Scott Wardle, Roberto Parolin EWG SG14:
Michael
P0125R0 std::bitset inclusion test methods: Michael/Walter

2.3 Ongoing topics placeholder (which we won't likely get to but will schedule)
Exceptions/RTTI
SIMD vector and Matrixes
Allocators
GPU/Accelerator design
Array View and Bounds checking

3. Any other business

4. Review

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft]

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/-Dw-jYbhlAc�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0039r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0040r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0041r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0130r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0125r0.html�

4.2 Review action items (5 min)

5. Closing process

5.1 Establish next agenda

2nd vector/SIMD

5.2 Future meeting
Next call : Jan 27

Dec 9: Nvidia's Agency With Jared and Mike Garland - DONE
Jan 13: 1st vector/SIMD call - 2 hours: Pablo - Done

Jan 20: AMD's HCC compiler with Ben Sander - 2 hours
Jan 27: 2nd vector/SIMD call- 2 hours:Matthias proposal? Other proposal?
Feb 3: LSU's HPX runtime with Hartmut Kaiser
Feb 10: possibly 3rd vector/simd call: Other proposal?
Feb 17: Khronos's OpenCL SYCL with Andrew Richards

Minutes for 2016/02/03 SG14 Conference Call

Minutes by Michael

1.1 Roll call of participants
Brett Searles, Arch Robison, Lee Howles, Jarred Hoberock, Andrew Richard, Michael Garland,
Michael Wong, Matt Newport, Scott Wardell, Hartmut Kaiser, Al Grant, Ben Sandres, Tony
Tye, Maria , John McFarlane

1.2 Adopt agenda

Switch order.

1.3 Approve minutes from previous meeting, and approve publishing previously
approved minutes to ISOCPP.org

Yes

1.4 Review action items from previous meeting (5 min)
1.4.1. All: Consider attending SG14 F2F meeting hosted by SONY at GDC 2016
Tentative: Tuesday March 15 and/or Wednesday March 16
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Euo2So0kYe
w

1.4.2. All: Consider attending Jacksonville Fl, C++ Std meeting Feb 29-Mar 5.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf

2. Main issues (125 min)

2.1 Review SG14/SG1 logistics, for upcoming telecons and meetings: 5 min
SG14 meeting moved to San Mateo.
Time of Wednesday is not idea.

2.2. LSU's HPX : 45 minutes

 2. general purpose runtime system
works on single node, but all is for distributed
clusters as well in HPC, but also in cloud
HPX create a light weight user threading system, like TBB, PPL

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�
https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/Euo2So0kYew�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf�

dont want to specifically know what data is where
load balancing comes in as an issue
use 128 bit virtual address called AGAS
can move things from A to B without updating al references to that object
overhead to create thread is 800ns
an active messaging system
explicit support accelerators
3. can outperform MPI and OpenMP
no strings attached licensing
4.
took all C++11/14 and more and ported to HPX
why reimplement? so everything works distributed as well
also full parallelism and concurrency TS
6.need integration of all these proposals in current state
some commonality, but somethings are missing
need parallel ranges
vectorization
add distributed and high performance computing
goal: make parallelism and concurrency features independent of external solutions including
MPI, OpenMP
7. 4 things to reason about
1. thread safety limitations, this can run concurrently or that can ru nsequentially
2. what goes first: sequence; needs a result to go ahead
3. where to run, affinity,
4. addtional parameters like grain size, short items, then dont schedule a thread, select algos
(kind of sort)
8. + 9.
Conceptified is required
10. existing exec policies extends beyond just parallel algos
11. need to run algos asynchronously
with task excecution policies
par(task), seq(task)
advantage with parallel algo is mitigate the join or the reduce, join has implciit barrier
turn it into async algo, can do other things, can mitigate the effect
HPC aims to threads of runtime in the hundreds of microseconds, plenty of other work to be
performed while join is happening
12. executors
N4466 use exec agents to perform the work
limits to paralle algo, but wnat to use it in broader context
how do you run work, where, what sequence
13. bulk async, single async, through executor traits, easy to implement, uniform to execute them
async version returns a future
we should reuse this in C++,
14
executor has fire and forget semantics
and timed executor trait, at a time or duration

15.have NUMA awareness executors
16. added executor parameter, how many iterations in each run
OpenMP static dynamic, guided,
use parameter_traits
17. has to expose one function called get_chunk_size
how many processing units we have and divide by the number of iterations
18. use par.on for executor context and extend with par.with for param
can sequentially compose them to rebind both
19. will combine hundreds for each spawn thread underneath with chunk size,
this is sufficient to make openMP parallel for loop unneeded in C++
21. future object allows to synchronize with anothe rthread amd also data dependency explicit
enable autoparallelization at runtime without user make execution graph explicit
will always be generaated by compiler for you
22. addes sequential composition .then
one future comes back from async and whenever f1 is ready, then lambda is invoked, f1 is
passed through to lambda, f.get will give 123
f.get will not suspend; lambda is invoked after future is ready
on millions of threads, dont want large number to be suspended
stack has stack space associated and will eat virtual address space
composition is very important, better then calling get, then calling the function
23. parallel composition in concurrency ts
24. hpx did this with dataflow
can extract value from the future only after you know future is ready
dataflow guaranetees only after future is ready
this changes the whole game

25. also added optional first arg, so can pass executor to these functions, where to invoke and
how to invoke
can mix single futures and vector of futures
and when_some, wait_any, wait_all, wait_some
27. seqential algo adds policy as first arg
28. shows rebind exeuctor of par.on() or par.with() to control how many iterations per thread
29. how useful async algos are
list of elements
in a mail client, marked up that you wnat to move to a folder
use a partitioning
31. gather can take multiple Iter, marked, and make pair
1st with inverted predicate
2nd with straight perdicate
give insertion range
32. gather_async takes same set of arguments
returns a future to a pair of iteratos
invoke stable_partition with task exec policy, gives future back, f1 (returns immediately),
f2(scheduled afterwards) and both can run in
parallel using dataflow
unwrap allows passing future along without blocking, helps get rid of future

async algo which returns an implicit async execution graph, which is built out of futures,
a future represents a data dependency
writing straight code, but does not execute immediately
dataflow is awakward?
33. but with await and resumable functions will now makes this semantically equivalent to 32,
but simpler
improves system utilization massively
code is not impeded by the join, as long as I have other work to do
34. have task block proposal shows canonical fork join traversing a tree
key function is define_task_block invokes a lambda, can run additional tasks
all these tasks will be synchronized before define_task_block returns
so essentially a fork join block C++ way
36. adds 2 optional things
exec policy to make aysnc
add args to enable fine grain control of executors
37 shows these additions
38. future plans
GPU
distributed data structure
partition vector and each partition vector can be on different nodes, gpus and enable working on
it with parallel algo
work has to follow data
39.
90% taken from existing
added 5% missing functionality to enable more things
avoid coming up 100 ways to do paralellism
a single versatile way for all different ways
uniform versatile generic

OpenMP difficult to use in generic way.

2.3 Khronos SYCL (tentative depending if he has time) : 45 minutes

Andrew Chair of SYCL group
focused on HW level, especially graphics, and the new Vulkan, SYCL is part of that
slide 3: how does SYCL compares to other models
what are the key decisions
also an overview
OpenCL 1.2 feature set
4: modern C++ separate s the what from the how
what do users want to do
details of SYCL: needs to enable users to do this, expose the performance capability of OpenCL
devices
5: enable a C++ ecosystem for OpenCL, enables other STDs to work and C++ Lib to work with
SYCL
must run on wide range of GPU devices/but OpenCL can run on CPU and GPU, FPGA, DSP

can build C++ template libraries
royal-free open Std
Michael: what would be the intellectual burden (IP) if we adapt any part of this for C++
may need to independently work it out
any vendor can implement SYCL
expose capability of HW
6: many ways to map C++ to parallel processors
follow established approaches
enabler for other to build C++ parallel STL on top SYCL
make sure all of the OpenCL HW capability are supported in SYCL
added no more then needed so as not to burden
8: SPIR is intermediate binary format allows to put other languages on top of OpenCL
SYCL has a C++ Compiler that outputs SPIR and a runtime for OpenCL
the same C++ template library on top of SYCL, could also be compile for CPU, Custom
Processor,
9:align with C++ Std; future proof for future OpenCL device capabilities
other then a few little things, did not add any language extensions to C++; no restrict; no cv
qualified for classes
means all your code can compile for host
provide full OPenCL feature set in C++, any thing you can do with OpenCL can now be done
through C++
Hartmut: does model of SYCL assume the device is connected to the host, is it in the same node?
Not an assumption, not a requirement of SPEC; in HPC context it is assumed it is single node;
one company can offload code to another node in another network
Hartmut: HPX can access arbitrary devices in a cluster;
HPC context is really aimed at single node
multi node programming would be as a C++ library
10: looked at other language styles and where SYCL fits in
an embedded DSL:
problem with compile-time compilation approach, hard to expresss control flow, mapped calls
that adds to expression calls, hard with expressibility, as you would have to add your own types
can get a library with this approach and can compile /port to SYCL
another approach is C++ Kernel language: host and kernel separate source
very explicit what is running where
independent host and device compilers
can generate code at runtime
very popular in graphics
hard to move code around, and define where the interface is
third is single source
easy to compose things
can have offline compilation, can type check
can conflict between host and device compiler, can have any device in OpenCL that is just
plugged in, SYCL has Shared source as a solution
11: directive-based OpenMP/OpenACC
is popular in HPC, can incrementally parallelize serial code
hard to template things

code is out of order
debug is weird
2 is thread parallelism in C++11 thread
does not map well to highly parallel architecture like GPU
3 is explicit parallelism
composable,
requires user to know the parallelism
12
if its CPU, HSA, cache coherent single-address space;
can pass pointers around, low latency
bandwidth limited; costs power
SYCL needs wider range of devices
2 is non-coherent single address space
can still have pointers to access data, may need to pass ownership to device
race free software needs at least this level to control ownership
3 is multi-address space
pointers may have different address space
wide device support
just install a driver
13. 14.
need all the optimization options
how data is moved around, how they are accessed
must handle parallelism of openCL ND ranges (1,2,3 dimensional ranges, broken up into work
groups, workgroup into work items, ...
multi-device from multi-vendor
enable OpenCL C code to work with SYCL
15.
to access data, must encapsulate data in a buffer
created 4 float 1D buffers
construct the buffers from the arrays
synthesize buffers from arrays
create a queue, critical for OpenCL, runtime will queue and find the device, fallback to cpu if
none
submit work to the queue using lambda which is passed handler, will call command group
handler
lambda is called immediately but only enqueue work
but kernel will run within the queue
Michael: is the lambda called by?
by the host
called by submitting side of the queue,
a parallel for that will be executed on the device
may enqueue work to move data to the device
have separated access from storage of data
a buffer cannot be accessed directly (no operators)
create accessors 3 read 1 write
for lifetime of accessors, it will manage define the lifetime

a few optional things like constant memory
parallel for is executed on device with range
end of sumit scope will submit all this in atomic form
the next end scope will wait for all operations to complete using RAII
16. access within that is to build up task graph
work out dataflow
and dependency
Tony: destructor of the get access guarantees Happens before that will get everything back
up to a point, if do it on the host then yes it will instantly wait and release on destruction
if inside a queue submit, then it would not do it immediately, then it will go into task block, will
not block on construction of accessor on a task block, just enqueue
handler from concurrency group in C++
Lee: SYCL is not compiled so host compiler can see all dependencies
so all dependencies are done at runtime, so why we need to use scope
handler has a temp var that gives a lifetime
handler is a node in the task graph
Maria: all these submits ... can follow dependencies without state, all is explciit, need a read or
write
all these submits are one kind of transactions
17.
accesses with different pointer sizes like FPGA
accesses allow you to asynchronously move data around and different memory systems
define how you can use pointers
accessors can be raw pointers
18.
hierarchy of parallelism
limit on how many work items in a work group, size of work groups, data a work group can
store, how many separate items of work
allow people to program this hierarchy in a C++ way
19.
single threaded buffer and queue submit
can have a parallel_for_workgroup, workgroup scope only execute once per workgroup
||_for_workitem, only 1 workitem in a workgroup is run
easy to have parallel_for in parallel_for
easy to have parallel reduce and pass in actual reduction functions
Michael: is reduction associative or commutative
assume people will write their own parallel reduce, operator may need to be commutative or
associative
20.
can also be shared source
wants to support lots of devices with different compilers, diff options, diff algo for diff devices
shared source means pass it through multiple compilers
device compiler extracts kernel from same file
allows FE to optimize for specific devices; give better performance and portability
21.
header file can include predfined compiled device file

accessors is task graph, implemented as opencl memory objects, can be pointers
host can have different view then device and can see constants differently
parallel for device compiler extracts content of that parallel for,
no eh, no rtti, all functions inside must also conform
the lambda has no name; on host cannot access the compiled kernel with the host code; which
kernel
SYCL requires a templated name for lambda
Michael: what data can you capture
OpenCL 1.2 requires pass by value, no ref, classes must be standard layout
data is captured on host by handler and read on the device by body of lambda,
same code being compiled, if data captured on host then it (host runtime) will be passed as an
argument
if an accessor, then go through OpenCL access system
Shared from slide 12 is not used
23. can write parallel embedded DSL, a key benefit of SYCL
working with tensorflow
24. 2.0 has shared virtual memory so can share pointers
1.2 SPIR is optional. 2.0 SPIR-v is required
enable separate source for kernel and host

General discussions
reducing latency
embeded , HPC, consumer devices marry
embrace latency
hide latency
avoid starvation, contention points
do useful networking in the background
increase 90%
expose parallelism
support memory Hierarchy, affinity,
reduce contention
can we do this with futures?
move enabled futures, or handles
physical location of data matters
when is data allocated in a future?

data enters future by applications
continuation function allocates the data
return with unique ptr or move semantics, or put it in global namespace and use references and
do synchronization yourself
SYCL preallocate on host, but dynamically allocated on device
can we return a future parameterized by the set of accesses with the set of handle in prior future
future should not block
diamond flowcontrol, requires await stuff
basically what SYCL does, dont have access to the data until you get it back from the buffers, all
asynchronous
await does not suspend or block

- show quoted text -
- show quoted text -
Next call : Feb 10

Dec 9: Nvidia's Agency With Jared and Mike Garland - DONE
Jan 13: 1st vector/SIMD call - 2 hours: Pablo - Done

Jan 20: AMD's HCC compiler with Ben Sander - 2 hours
Jan 27: 2nd vector/SIMD call- 2 hours:Matthias proposal? Other proposal?
Cancelled
Feb 3: LSU's HPX runtime with Hartmut Kaiser/Andrew Richards - 2 hours
Feb 10: 3rd vector/simd call: Matthias Kretz/Joel Falcou, Mathias Gunard

Feb 12: C++ Std meeting mailing deadline (no call)
Feb 17: Uniform install/Packaging proposal

Minutes for 2016/02/10 SG14 Conference Call

Minutes by Michael

1.1 Roll call of participants
Michael Wong, Xinmin Tian, Mattias Kretz, Billy Baker, Marco Poco, Visal, Arch Robison,
Robert Geva, Ewo from Codeplay, Detlef Vollman, Mattias Gaunard, Michael Garland, JF
Bastiien, Hans Boehm, Al Grant, Jens Maurer, Lees Howe Facebook, Jared

1.2 Adopt agenda

Yes
1.3 Approve minutes from previous meeting, and approve publishing previously
approved minutes to ISOCPP.org

1.4 Review action items from previous meeting (5 min)
1.4.1. All: Consider attending SG14 F2F meeting hosted by ... at GDC 2016
Tentative: Monday March 14 or Wednesday March 16
finalized to be March 14, Feb 29 mailing deadline

http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancial-
at-gdc-2016/

http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancials-
at-cppcon-2016/

sg14 cppcon 2016 is Sept 21

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/9CcqpRTe-
yw
Possible plan and venue changes.

1.4.2. All: Consider attending Jacksonville Fl, C++ Std meeting Feb 29-Mar 5.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf

2. Main issues (125 min)

http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancial-at-gdc-2016/�
http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancial-at-gdc-2016/�
http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancials-at-cppcon-2016/�
http://wongmichael.com/2016/02/09/c-standard-sg14-meeting-games-devlow-latencyfinancials-at-cppcon-2016/�
https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/9CcqpRTe-yw�
https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/9CcqpRTe-yw�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4555.pdf�

2.1 Review SG14/SG1 logistics, for upcoming telecons and meetings: 5 min

2.0.1. Meta discussion
dont make decisions at these calls
but expose issues

We are reversing order of presentation as it makes more sense
2.2. Matthias Gunard vector Proposal: 45 minutes

 P203r0
comments on Kretz's paper
based on boost simd
agree on most details
concern how it may impact implementation
in Vc depends on target architecture, may not be able to do portable code
want some ability to get vectors of arbitrary size
extend on Vc to do that
a number of operations which are not provided for simplicity
3 operators missing are
shuffle to reorder elements inside vector
provide the index of the element want to reorder
sensitive to size and need to know in advance; could use metafunction
another is things that manipulate vector of different types,
want to convert float to int and same number integers
finally architecture with different sizes of simd registers
x86 avz 128 and 256, need way to convert between the 2
arm also has that; not all operations are available in both types
full multiply and add is an example
how much freedom will be in size of vectors
simd vector of 2 floats, can I do it as vector of 4 floats
syntax Vc requires expression template, explore extending language instead
e.g. condition operator needs this translates to inline if
extends ternary operator to overload it
Kretz: do not use expression template in Vc, conditional can be done with out it
want different syntax anyway, SG1 has a different syntax, will need to go through different
syntax.
SG1 has not tied proposals to language changes
not entirely sure it can be done without expression templates,
take offline, should be doable
argument made that u can write code that is agnotic of the size
bit idealistic
number of application where you need a fixed sized
Kretz agree

just don't agree how we want to have the low level types
JF: what is meant by portability can you expand
I mean source portability
others mean pre-compiled code, not quite binary compatibility
please clarify in the paper that it is source
what is shuffle issue? are u working with chandler
Kretz: want to keep it out unless we have a good solution in Lenexa, with deadline approaching
fast, will not have solution
good chance to have Mattias Guanard take the lead there if he has a solution
still an open issue
need fixed size simd vector with shuffle
unwritten simd code which uses ???
no question we need shuffle
question how to shift something and add shuffle later, or now
sure no issue with it later on
does not change binary compatibility
main question is how to add it indpependently

slides: x is by reference, what if I modified
it is written back to container, this is what lambda does
for each element it is read and write
want to hide away loads and stores
does this interface require to read memory?
no
OK
Gunard: Want to do aliasing?
Kretz:Not very good idea. use the non-const subscript to do aliasing
Good for an Sg1 discussion
it is important and can be done efficiently in all compilers
Gunard: is everything set on the ABI requirements?
not happy with it
problematic target of x86 with avx vector on 512 and 256 differences
different TUs will have different types
simd vector type call from different translation unit,
will need native vector width; prefer to see default if not specified is the largest vector width
will get abi if with different compiler flag
JF: can be shipped without that support
if default not changed later on
Pablo: this is QOI? right
cant change the default from one C++ to another
default is dependent on implementation, then QOI cannot change the default
people often use simd as extensions
will link code built for different targets
C++ may need to support this
Pablo: if width of simd type is encoded in the type
not for derived type

generate multi version
Geva; what do you mean no link error
point_v and float_v will be independent
but get undefined behavior if you call the code
ABi is about performance, so u need understanding: a foot gun
Geva: language is not specfying abi
cross lane operations:
extraction and insertion
cross lane operations
vectorABI
Michael: are we that far apart
abi problem can make a pitch for solution for it
should talk to Torvald to make abi stable
Geva: have abi that call different translation unit when working on OpenMP simd

2.3 Matthias Kretz/Joel Falcou vector proposal: 45 minutes
2. not collaborated with Joel, he is working with Gunard on boost.smd
3. have packed registers in CPU
4. have natural size, how many value can fit into registers, and how many value can process in
parallel
if we build something with a data parallel storage xpress in alo
5. can be an arbitrary number of element in x,
w is width of the vector
multiply however many elements makes sense for the target system on the right
auto vec is nice, but not good solution
information gets lost,
2 other ways to express parallelism: control structures to execute in parallel
other way is threads; its an abstraction for independent control flow; will need explicit
synchronization
hw level needs
?how is this different from valarray
it is runtime sized so cannot optimize at compile time
will have to copy data, access data on heap; compiler cannot optimize it to full extent
cannot get to 400% that intrinsic could get
float_v is statically sized, still need a loop
slide not obvious that we have loop involved.
6. stored by compiler at compile time
mask is also dependent on T
type can compile to different system for portability
7. express data parallelism, not register specific
even though came from motivation from what to abstract ugly intrinsic away
not programming for specific HW anymore
8. do all this in parallel as much as HW allows
9. need to know how many u process; so how do you do your loop?

loads and stores are the main issue
? why does it need to be a compile time constant
W(t) want compiler to opimize for target HW, compiler need to know
if compiling for several width of vectors, compile multiple times for different arch
10. float_v will have multiple answers
x>0.f will not return a boolean
11. do condition assignment instead of branching
12. can get vector type to get speed up on various problems
13.every op implies lock step
each operation internally can run with any other model, most ops does not have inter lane
depdenency
chance for compiler to take it out
14. transformation to make it work on GPU with M Gunard
15. have memory access patterns, both AoS and SoA are bad choices
access to x,y,z would fall apart in memory and not be very efficient
Alternative is on slide 16
16. for array of vectorized structures
compiler will transparently make this happen
enable more performance portability
17. most of input output has to be scalar objects

enables broadcast , load store, subscripting
if u have to do this for every structure, very hard
want it automatically
write scalar structure, tell compiler to vectorize, and get new types, and get new functionalities
works great with tuples to get reflection
anything that works wit tuple can with this simdized structure
18. this shows how we do that
do nearest neighbor search
(4,5) works in parallel, then do reduction, what index value in the set
parallelize nicely for calculation of distance square
19. scalar is an exhaustive search
vectorized gives speedup
auto vectorization has a lot of trouble to figure this out
transformation cannot be done by compiler because data size is fixed to language
20. templated to type you are working with for float and float_v
syntax for conditional assignment
21. use parallel algo from SG1
use a generic lambda so it can be scalar or vector type
to get rid of loads and stores that you would have to do manually
parallel loop needed at language level, will have parallel execution of different steps in the loop
have issues with exception, i/o in lambda body,
but no problem with simd in lambda body
22. loop vectorization need countable loop
when 1 is found, wants to break out
this is an uncountable loop

23. go over all the pixels in picture, determine if it is in the set or not
take multiple pixels in x direction, and calculate in parallel
inner loop that does the serious calculations, number of iteration is different for different pixels,
capture it woth a mask
before going to y loop
some will drop out earlier
will be full speedup of mandelbrot
searching in multi dimentions with k-d tree
want interface that is scalar,
modified k-d tree on a single point whether to left or right
type T is the point with z,y,z, internally will use that as the node
from the outside not clear anything simd is going on
once with reflection in C++, can be nicer and see through it
25: graph of kd performance
26. 6 dim
27. 9 dim more speedup
28. what we want to have in our vectors
options to parallelize;
decide for one of the region, that we want simd
horizontal from benoit, author of eigen
do I take the same data member from several objects? horizontal
take data member in one object and process thoise similarly: vertical
think of markets
29. distance square function, iterate over the complete container, and look for entry in container
with distance square
scalar is exhaustive search
30. where is parallelism
show horizontal vs vertical
31. same function,par sq a-ref, do 3 of those in parallel and sum over result
or we take multiple points and calculate whole thing in parallel
32 shows graphical representation for vector of 4 entries
3/4th of the vector in use.
33. create a point v, then store multiple distances
sets that are interleaved and look for nearest neighbor
use remaining 4 or 8 and get the best one
34
no reduction in for loop
only reduction in line 12 and 13
often smaller objects should do horizontal; if 16 entries does not make sense to just use 3 of
those
few but large objects linpack should use vertical vectorization
35. vertical less invasive to code can hide it in function
horizontal depends on good data structure

Michael: should submit paper as is
can add new paper describing set up for solutions.

- hide quoted text -

2.4 Review proposals results from Kona: 20 min
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/-Dw-jYbhlAc

We won't have time to discuss in detail, but we can go over major questions and seek
opinions and feedbacks

P0037R0 Fixed point real numbers John McFarlane LEWG SG14/SG6: Lawrence
Crowl
P0038R0 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy

https://groups.google.com/a/isocpp.org/forum/?fromgroups#%21topic/sg14/-Dw-jYbhlAc�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�

P0039R0 Extending raw_storage_iterator Brent Friedman LEWG SG14: Billy Baker
P0040R0 Extending memory management tools Brent Friedman LEWG SG14: Billy
Baker
P0041R0 Unstable remove algorithms Brent Friedman LEWG SG14: Billy Baker
P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael
P0130R0 Comparing virtual functions Scott Wardle, Roberto Parolin EWG SG14:
Michael
P0125R0

Dec 9: Nvidia's Agency With Jared and Mike Garland - DONE

 std::bitset inclusion test methods: Michael/Walter

2.3 Ongoing topics placeholder (which we won't likely get to but will schedule)
Exceptions/RTTI
SIMD vector and Matrixes
Allocators
GPU/Accelerator design
Array View and Bounds checking

3. Any other business

4. Review

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft]

4.2 Review action items (5 min)

5. Closing process

5.1 Establish next agenda

C++ Install packaging proposal from Activision/Blizzard

5.2 Future meeting
Next call : Feb 17

Jan 13: 1st vector/SIMD call - 2 hours: Pablo - Done

Jan 20: AMD's HCC compiler with Ben Sander - 2 hours
Jan 27: 2nd vector/SIMD call- 2 hours:Matthias proposal? Other proposal?
Cancelled
Feb 3: LSU's HPX runtime with Hartmut Kaiser/Andrew Richards - 2 hours- Done

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0039r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0040r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0041r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0130r0.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0125r0.html�

Feb 10: possibly 3rd vector/simd call: Matthias Kretz/Joel Falcou, Matthias Gunard
Feb 12: C++ Std meeting mailing deadline (no call)
Feb 17: Uniform install/Packaging proposal
Feb 24: low level bit manipulation proposal

	Minutes for 2015/10/14 SG14 Conference Call
	Minutes for 2015/11/11 SG14 Conference Call
	Minutes for 2015/12/09 SG14 Conference Call
	Minutes for 2016/01/13 SG14 Conference Call
	Minutes for 2016/01/20 SG14 Conference Call
	Minutes for 2016/02/03 SG14 Conference Call
	Minutes for 2016/02/10 SG14 Conference Call

