
P0208Rr0 | Copy-Swap Helper 1 of 5 | P a g e

WG21 Document Number: P0208Rr0
Date: 2016-02-12
Intended audience: LEWG
Pablo Halpern <phalpern@halpernwightsoftware.com>

Copy-Swap Helper

Motivation

A favorite idiom for writing exception-safe code is to employ the copy-swap idiom. In
general, the copy-swap idiom involves making a copy of an object and modifying the
copy. Once the modification is successful and does not throw an exception the
original object and the copy are swapped. If an exception is thrown during
modification of the copy, however, the original object is left unchanged, providing what
is often called the strong guarantee of exception safety. In pseudo-C++, the copy-swap
idiom for safely modifying an object x of type T is:

T xprime(x);
// modify xprime here (might throw)
…
using std::swap;
swap(x, xprime); // Does not throw

A variation of this idiom is commonly used to get the strong guarantee in the
implementation of a copy-assignment operator:

T& T::operator=(const T& rhs)
{
 T(rhs).swap(*this); // T::swap does not throw
 return *this;
}

The problem with this idiom is that if T is an allocator-aware type, the allocator
instance used for the copy might not be the correct allocator instance to use for the

swap. In the assignment-operator example, if rhs has a different allocator than

*this, it is likely that the temporary copy T(rhs) will have the same allocator as rhs

and a different allocator than *this. Unless the allocator type has the

propagate_on_container_swap trait set to true (a rarity), the swap becomes

undefined behavior and is likely to fail, not with an exception, but with an assertion
failure or worse.

The general copy-swap idiom for modifying a single object of type T is less likely to fail
because most allocators do propagate on copy construction. Such propagation is not

guaranteed, however, with pmr::polymorphic_allocator in the fundamentals TS

being an example of an allocator that does not propagate on copy construction of the
container.

mailto:phalpern@halpernwightsoftware.com

P0208Rr0 | Copy-Swap Helper 2 of 5 | P a g e

Summary of proposal

This paper proposes two or three function templates that can be used to solve the
problems above and have the added benefit of annotating the use of the copy-swap
idiom in user code. The functions use metaprogramming to determine if a type uses an
allocator and, if so, it ensures that the temporary copy used for the copy-swap idiom
uses the correct allocator. Because the presence or absence of an allocator is
determined at compile-time, these function templates are usable in generic code,
where the type being swapped may or may not use an allocator. The general copy-
swap idiom using these facilities would look like the following:

T xprime(copy_swap_helper(x));
// modify xprime here (might throw)
…
using std::swap;
swap(x, xprime); // Does not throw

The assignment operator example would be rewritten as follows:

T& T::operator=(const T& rhs)
{
 copy_swap_helper(rhs, *this).swap(*this); // T::swap does not throw
 return *this;
}

Target publication

These functions can be targeted for C++17 or the third revision of the Library
Fundamentals TS (LFTS-3) or both, as determined by the LEWG. It should be noted
that the problem being solved has existed since C++11 and that the facility being
proposed has been fully implemented.

Implementation experience

The functions described in this paper have been fully implemented and well tested.

The code (including test driver) is available at https://github.com/phalpern/uses-
allocator.

Alternative design

The two-argument copy_swap_helper performs the copy or move but not the actual

swap. If the assignment idiom is the only use of these functions, it may be reasonable

to change their name to swap_assign and have it do the entire options, thus

simplifying the use of the idiom for assignment:

T& T::operator=(const T& rhs)
{
 return swap_assign(*this, rhs);
}

https://github.com/phalpern/uses-allocator
https://github.com/phalpern/uses-allocator

P0208Rr0 | Copy-Swap Helper 3 of 5 | P a g e

However, there may be a more general use for making a copy of an object using the
allocator from a different object of the same type, so it was decided to keep the
functionality separate. Another alternative is to offer both.

The name copy_swap_helper is specific to the idiom. However, the functionality of

producing a copy of an object with an allocator from the same or a different object
could have broader applicability. Names that convey the meaning make-a-copy-using-
the-same-allocator and make-a-copy-using-the-allocator-from-x might be better choices,
and I am willing to entertain such names.

Proposed Wording

Text that makes sense only in the LFTS is shaded grey. It would not be copied to
C++17 unless and until polymorphic resources are moved to C++17.

Add the following feature test macro to section 1.6 [general.feature.test] of the LFTS:

Doc

no.

Title Primary

Section

Macro Name Suffix Value Header

P0208 Copy-Swap

Helper

TBD copy_swap_helper 201602 <experimental/memory>

Add to header <memory> (or <experimental/memory>) synopsis:

namespace std {

namespace experimental {

inline namespace fundamentals_v3 {

template <class T>

 remove_reference_t<T> copy_swap_helper(T&& other);

template <class T, class U>

 remove_reference_t<T> copy_swap_helper(T&& other,

 const U& alloc_source);

The following is proposed instead of, or in addition to, the previous (two-argument)
function templates.

template <class T>

 T& swap_assign(T& lhs, decay_t<T> const& rhs);

template <class T>

 T& swap_assign(T& lhs, decay_t<T>&& rhs);

}}

}

Add the following descriptions for the above function templates:

template <class T>

 remove_reference_t<T> copy_swap_helper(T&& other);

Effects: Defines a value R as follows:

— If T is an rvalue, then R is std::move(other)

P0208Rr0 | Copy-Swap Helper 4 of 5 | P a g e

— Otherwise, if other.get_memory_resource() is well formed and

uses_allocator_v<T, memory_resource*> is true, then R is an object of type

T constructed by uses-allocator construction ([allocator.uses.construction] in the C++

standard) with allocator other.get_memory_resource() and argument

std::forward<T>(other).

— Otherwise, if other.get_allocator() is well formed and

uses_allocator_v<T, decltype(other.get_allocator())> is true,

then R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

other.get_allocator() and argument std::forward<T>(other).

— Otherwise, R is std::forward<T>(other)

Returns: The value R, as defined in the effects clause, above.

template <class T, class U>

 remove_reference_t<T> copy_swap_helper(T&& other,

 const U& alloc_source);

Effects: Defines a value R as follows:

— If alloc_source.get_memory_resource() is well formed and

uses_allocator_v<T, memory_resource*> is true, then R is an object of type

T constructed by uses-allocator construction ([allocator.uses.construction] in the C++

standard) with allocator alloc_source.get_memory_resource() and argument

std::forward<T>(other).

— Otherwise, if alloc_source.get_allocator() is well formed and
uses_allocator_v<T, decltype(alloc_source.get_allocator())>

is true, then R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

alloc_source.get_allocator() and argument

std::forward<T>(other).

— Otherwise, R is std::forward<T>(other)

Returns: The value R, as defined in the effects clause, above.

The following is proposed instead of, or in addition to, the previous (two-argument)
function templates.

template <class T>

 T& swap_assign(T& lhs, decay_t<T> const& rhs);

Effects: swap(lhs, R), where R is defined as follows:

— If lhs.get_memory_resource() is well formed and uses_allocator_v<T,

memory_resource*> is true, then R is an object of type T constructed by uses-

allocator construction ([allocator.uses.construction] in the C++ standard) with allocator

lhs.get_memory_resource() and argument rhs for copy_swap or

std::move(rhs) for move swap.

— Otherwise, if lhs.get_allocator() is well formed and

uses_allocator_v<T, decltype(lhs.get_allocator())> is true,

P0208Rr0 | Copy-Swap Helper 5 of 5 | P a g e

o If
allocator_traits<decltype(lhs.get_allocator())>::propa

gate_on_container_copy_assignment::value is true, then R is

an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

rhs.get_allocator() and argument std::forward<T>(rhs)

o Otherwise R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

lhs.get_allocator() and argument rhs.

— Otherwise, R is rhs.

Returns: lhs

template <class T>

 T& swap_assign(T& lhs, decay_t<T>&& rhs);

Effects: swap(lhs, R), where R is defined as follows:

— If lhs.get_memory_resource() is well formed and uses_allocator_v<T,

memory_resource*> is true, then R is an object of type T constructed by uses-

allocator construction ([allocator.uses.construction] in the C++ standard) with allocator

lhs.get_memory_resource() and argument rhs for copy_swap or

std::move(rhs) for move swap.

— Otherwise, if lhs.get_allocator() is well formed and

uses_allocator_v<T, decltype(lhs.get_allocator())> is true,

o If
allocator_traits<decltype(lhs.get_allocator())>::propa

gate_on_container_move_assignment::value is true, then R is

T(std::move(rhs)).

o Otherwise R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

lhs.get_allocator() and argument std::move(rhs).

— Otherwise, R is rhs.

Returns: lhs

