
Structured bindings
Document Number: P0144R1
Date: 2016-02-03
Reply-to: Herb Sutter (hsutter@microsoft.com), Bjarne Stroustrup (bjarne@stroustrup.com),
 Gabriel Dos Reis (gdr@microsoft.com)
Audience: EWG

Abstract
This paper proposes the ability to declare multiple variables initialized from a tuple or struct, along the lines of:

 tuple<T1,T2,T3> f(/*...*/) { /*...*/ return {a,b,c}; }
auto {x,y,z} = f(); // x has type T1, y has type T2, z has type T3

This addresses the requests for support of returning multiple values, which has become a popular request lately.

Proposed wording appears in a separate paper, P0217.

Contents
Abstract ..1

1. Motivation ..2

2. Proposal ..2
2.1 Basic syntax ..2
2.2 Direct and copy initialization ...3
2.3 Basic type deduction..3
2.4 Qualifying auto with a cv-qualifier ...4
2.5 Qualifying auto with & ..4
2.6 Range-for ..5
2.7 Move-only types ...5

3. Q&A: Other options/extensions considered ..5
3.1 Should this syntax support initialization from an initializer_list<T>? ..5
3.2 Should this syntax support initialization from a braced-init-list? ..5
3.3 Should we also allow a non-declaration syntax without auto to replace tie() syntax?5
3.4 Should qualifying auto with && be supported? ..6
3.5 Should the syntax be extended to allow const/&-qualifying individual variables’ types?6
3.6 Should this syntax support non-deduced (concrete) type(s)? ..6
3.7 Should this syntax support concepts? ..7
3.8 Should there be a way to explicitly ignore variables? ...7
3.9 Should there be support for recursive destructuring? ..8

Acknowledgments ..8

mailto:hsutter@microsoft.com
mailto:bjarne@stroustrup.com
mailto:gdr@microsoft.com

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 2 of 8

1. Motivation
Today, we allow multiple return values via tuple pretty nicely in function declarations and definitions:

tuple<T1,T2,T3> f(/*...*/) { // nice declaration syntax
 T1 a{}; T2 b{}; T3 c{};
 return {a,b,c}; // nice return syntax
}

We enable nice syntax at the call site too, if you have existing variables:

T1 x; T2 y; T3 z;
tie(x,y,z) = f(); // nice call syntax, with existing variables

However, this has several drawbacks:

• It works only for separately declared variables.
• If those variables are of POD type, they may be uninitialized. This may violate reasonable coding rules.
• If they are non-PODs or initialized PODs, they may be initialized redundantly – first to a placeholder or

default value (possibly using default construction) and then again to their intended value.
• Even default construction is often undesirable, for example if f() is an attempt to open a file stream

and return the stream together with an outcome status. Being able to declare and initialize the variables
at the same time would be much more direct and more natural to read.

What we could like is a syntax to declare and initialize variables:

declare-and-tie(x,y,z) = f(); // nice call syntax, to declare and initialize

2. Proposal
We propose extending the local variable declaration syntax to allow:

• a single declaration that declares one or more local variables,
• that can have different types (and so must have a distinct syntax from the current multiple variable

declaration syntax where all variables have the same type),
• whose types are always deduced (using a single auto, possibly cv-qualified or &-qualified),
• when assigned from a type that supports access via get<N>() (including std::tuple and

std::pair) or whose non-static data members are all public.

2.1 Basic syntax
For the basic syntax, we want to make the new form distinct enough from the current form that requires the
variables to have the same type (e.g., auto x = 1, y = 2, z = 3;, or auto x, y, z = f(); which
initializes only z today).

There are several unused syntaxes available that we could use to express this case. Per the proposal in revision
R0 and subsequent EWG feedback in Kona, this paper will pursue this basic syntax:

auto {x,y,z} = f(); // braces

because it is more visually distinct from the existing syntax for declaring multiple variables of the same type, and
the {x,y} introduction syntax is used in concepts.

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 3 of 8

2.2 Direct and copy initialization
This paper proposes allowing direct and copy initialization, such as:

auto { list-of-comma-separated-variable-names } { expression };
auto { list-of-comma-separated-variable-names } = expression;

For simplicity the examples will focus on copy initialization, but all examples apply to the various forms.

2.3 Basic type deduction
The declaration

auto {x,y,z} = expression;

declares the variables x, y, and z, and deduces their respective types and initial values from expression.

Let N be the number of declared variables (1 or more), and E be the type of expression. There are three cases,
considered in order:

Case 1, built-in array: As with range-for, if E is an array type, then the declared variables’ types and initial
values are deduced from the types and values of the array elements as if we had written the following by hand:

auto&& __e = expression;

auto x = __e[0];
auto y = __e[1];
auto z = __e[2];

Case 2, get<>: As with range-for, if a member .get<#>() or else a nonmember ADL-visible get<#>() exists
and can be invoked with __e defined as auto&& __e = expression; and values of # from 0 to N-1, then
the declared variables’ types and initial values are deduced from the types and values of get<#>(expression)
where # is 0 for the variable declared first up to N-1 for the variable declared last. Initialization of the declared
variables is performed as if we had written the following by hand (including for lookup of the calls to get):

auto&& __e = expression;

auto x = get<0>(__e); // nonmember case
auto y = get<1>(__e);
auto z = get<2>(__e);

A get<> that needs access to nonpublic data members would need to be a friend or be implemented in terms
of a suitable member or friend function.

Case 3, public data: Otherwise, if all of E’s non-static data members are public and are declared in the same
base class of E (E is considered a base class of itself for this purpose), then the declared variables are initialized
from a declaration-order traversal of the non-static data members of E, and their types are deduced from their
initializers as if individually declared auto. E must have the same number of data members as the number of
variables declared (in this example, three), and no union members.

Notes:

• To be efficient, the wording is crafted to allow implementation latitude such as copy elision.
• std::tuple and std::array fall into case 2, and C-style structs and std::pair fall into case 3.

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 4 of 8

For example:

tuple<T1,T2,T3> f();
auto {x,y,z} = f(); // types are: T1, T2, T3

map<int,string> mymap;
auto {iter, success} = mymap.insert(value); // types are: iterator, bool

struct mystruct { int i; string s; double d; };
mystruct s = { 1, “xyzzy”s, 3.14 };
auto {x,y,z} = s; // types are: int, string, double

The reason to put case 2 before case 3 is to permit customization for structures. For example, given:

struct S {
 int i;
 char c[27];
 double d;
};

S f();
auto { n, s, val } = f();

What if we want s to be a string? This proposal does not currently support writing “string” on the s
parameter (see Q&A 3.6)

auto { n, string s, val } = f(); // NOT proposed

on the ground that this complicates the proposal and might block the path to pattern matching. However, by
putting case 2 first we can provide a set of getters if that is suitable:

template<int> void get(const S&) = delete;

template<> auto get<0>(const S& x) { return x.i; }
template<> string get<1>(const S& x) { return string{c,i}; }
template<> auto get<2>(const S& x) { return x.d; }

auto { n, s, val } = f(); // now s is a string

2.4 Qualifying auto with a cv-qualifier
As with individual variable declarations, here auto can be cv-qualified. The declaration

auto const {x,y,z} = f(); // const T1, const T2, const T3

is as in 2.3 but declares x, y, and z to be const.

2.5 Qualifying auto with &
As with individual variable declarations, here auto can be &-qualified. If the initializer is an rvalue, then it must
also be const-qualified, and results in lifetime extension of the returned tuple. Thus the declaration

auto const& {x,y,z} = f(); // const T1&, const T2&, const T3&

is as in 2.3 but declares x, y, and z to be const&.

Further, the declaration

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 5 of 8

auto& {x,y,z} = f(); // ERROR, illegal for an rvalue

is not legal for a returned rvalue, but can be correctly written by turning the rvalue into an lvalue:

auto const& val = f(); // or just plain “auto” to copy by value
auto& {x,y,z} = val; // ok, initializer is an lvalue

2.6 Range-for
The syntax is also available when declaring variables in range-for. For example:

map<widget, gadget> mymap;

for(const auto& { key, value } : mymap) { // read-only loop
 ...
}

This makes it simpler to deal with things like key/value pairs while avoiding the longstanding pitfall of forgetting
where to put the const to avoid an unintended conversion.

2.7 Move-only types
Move-only types are supported. For example:

struct S { int i; unique_ptr<widget> w; };

S f() { return {0, make_unique<widget>()}; }

auto { my_i, my_w } = f();

3. Q&A: Other options/extensions considered

3.1 Should this syntax support initialization from an initializer_list<T>?
We think the answer has to be no, primarily because the size of an initializer_list is dynamic whereas the
list of variables to be defined is static.

3.2 Should this syntax support initialization from a braced-init-list?
For example:

auto {x,y,z} = {1, “xyzzy”s, 3.14159}; // NOT proposed

We think the answer should be no. This would be trivial to add, but should be well motivated and we know of no
use cases where this offers additional expressive power not already available (and with greater clarity) using
individual variable declarations. This can always be proposed separately later as a pure extension if desired.

3.3 Should we also allow a non-declaration syntax without auto to replace tie() syntax?
For example:

{x,y,z} = f(); // same as: tie(x,y,z) = ...
{iter, success} = mymap.insert(value); // same as: tie(iter,success) = ...

We think the answer should be “no, at least for now.” We know of no use cases where this is better than using
std::tie, as noted in the comments. It would also complicate the grammar because { is already permitted in

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 6 of 8

this position to begin a block, so we would need lookahead to disambiguate. (Using () parens is worse, because
code like (iter, success) = expression; already has a meaning and in some cases might compile
today.) This can always be proposed separately later as a pure extension if desired.

3.4 Should qualifying auto with && be supported?
Yes, mainly because of range-for. Note that auto&& is a “forwarding reference,” which is usually for parameters.
The one notable valid local forwarding use is to forward a value to a range-for loop body:

for(auto&& {first,second} : mymap) { // proposed
 // use first and second
}

3.5 Should the syntax be extended to allow const/&-qualifying individual variables’ types?
For example:

auto {& x, const y, const& z} = f(); // NOT proposed

We think the answer should be no. This is a simple feature intended to bind simple names to a structure’s
components by value or by reference. We should avoid complication and keep the simple defaults simple. (If we
want const/& qualification, why not a concept/type name too? Those should be considered together; see 3.6.)

We already have a way to spell the above, which also makes any lifetime extension explicit:

auto const& val = f(); // or just plain “auto” to copy by value
T1& x = get<0>(val);
T2 const y = get<1>(val);
T3 const& z = get<2>(val);

Secondarily, we could be creating subtle lifetime surprises when the initializer is an rvalue:

• Should a single const& extend the lifetime of the whole tuple? The answer should probably be yes,
but then this could cause surprises by silently extending lifetimes for the other values in the tuple.

• Should the use of non-const & be allowed? If we allow any const& to extend lifetime, then non-const &
would also be safe as long as there was some other variable being declared using const&. But that
would be inconsistent with the basic case, and create quirky declaration interactions.

• Should only const, but not &, be allowed? That would avoid the above problems, but feels arbitrary.

3.6 Should this syntax support non-deduced (concrete) type(s)?
For example:

string {x,y} = f(); // NOT proposed: same type

auto {x, string y} = f(); // NOT proposed: conversion to string

We think the answer should be no. This is a simple feature intended to bind simple names to a structure’s
components by value or by reference. We should avoid complication and keep the simple defaults simple.
Complication here might block evolution paths to a more general form of pattern matching.

In the discussions on the reflectors and in Kona, the string example was repeatedly mentioned as a reason for
allowing explicit specification of a type for individual variables. The suggested source would be some kind of C-

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 7 of 8

style string that needed conversion to string. Note that this conversion is easily achieved using a get<N>
function as shown in section 2.3.

3.7 Should this syntax support concepts?
For example:

Iterator {x,y} = f(); // NOT proposed: same concept

something {Iterator it, bool b} = f(); // NOT proposed: different concepts

We think the answer should be no. This is a simple feature intended to bind simple names to a structure’s
components by value or by reference. We should avoid complication and keep the simple defaults simple.

As noted in 3.5, we already have ways to spell all of the above. For example, with the Concepts TS extensions we
can already write:

auto&& val = f(); // or just plain “auto” to copy by value
Iterator it = get<0>(val);
bool b = get<1>(val);

The argument could be made that in other cases we do not have mandatory type deduction, so that for
parameters and concepts you can choose among: specifying the exact type (no deduction); specifying a concept
(constrained deduction); and specifying auto (unconstrained deduction). If we do not allow that here, we are
breaking consistency for return value binding. We don’t think that argument holds, because the purpose of this
feature is to supply a simple default that you can already write out by hand. We do not need to burden a
targeted feature with ornamentation to become a second (and ornate) way to spell something we can spell
already; indeed, that would be missing the point of adding a simple default.

Finally, allowing specific concepts or types would be feature creep. The purpose of the feature is to bind new
names to the values that are already there. Even replacing auto with a concept or type as in the first group of
lines changes the meaning, because in the proposal auto{x,y} can deduce different types whereas
presumably the concept or type must apply to all variables. This will nearly always be wrong, and people will
want to mention the concept and type names on the individual components, leading right back to 3.5 with the
same observations noted there, including that we already have a way to spell those things.

3.8 Should there be a way to explicitly ignore variables?
The motivation would be to silence compiler warnings about unused variables.

We think the answer should be “not yet.” This is not motivated by use cases (silencing compiler warnings is a
motivation, but it is not a use case per se), and is best left until we can revisit this in the context of a more
general pattern matching proposal where this should fall out as a special case.

Symmetry with std::tie, which uses std::ignore in expression, would suggest using something like a
std::ignore_t (since this is a declaration, not an expression):

tuple<T1,T2,T3> f();

auto {x, std::ignore_t, z} = f(); // NOT proposed: ignore second element

However, this feels awkward.

P0144R1 Structured bindings Sutter, Stroustrup, Dos Reis

Page 8 of 8

Anticipating pattern matching in the language could suggest a wildcard like _ or *, but since we do not yet have
pattern matching it is premature to pick a syntax that we know will be compatible. This is a pure extension that
can wait to be considered with pattern matching.

3.9 Should there be support for recursive destructuring?
For example:

std::tuple<T1, std::pair<T2, T3>, T4> f();

auto { w, {x, y}, z } = f(); // NOT proposed: types are T1, T2, T3, T4

We think the answer should be “not yet.” This could be a future extension, following experience with the basic
feature and in languages like Python.

Acknowledgments
Thanks to Matt Austern, Aaron Ballman, Jonathan Caves, Tom Honermann, Nevin Liber, Jens Maurer, Gor
Nishanov, Thorsten Ottosen, Richard Smith, Oleg Smolsky, Andrew Tomazos, Tony Van Eerd, and Ville
Voutilainen for feedback and discussion on drafts of this paper.

	Abstract
	1. Motivation
	2. Proposal
	2.1 Basic syntax
	2.2 Direct and copy initialization
	2.3 Basic type deduction
	2.4 Qualifying auto with a cv-qualifier
	2.5 Qualifying auto with &
	2.6 Range-for
	2.7 Move-only types

	3. Q&A: Other options/extensions considered
	3.1 Should this syntax support initialization from an initializer_list<T>?
	3.2 Should this syntax support initialization from a braced-init-list?
	3.3 Should we also allow a non-declaration syntax without auto to replace tie() syntax?
	3.4 Should qualifying auto with && be supported?
	3.5 Should the syntax be extended to allow const/&-qualifying individual variables’ types?
	3.6 Should this syntax support non-deduced (concrete) type(s)?
	3.7 Should this syntax support concepts?
	3.8 Should there be a way to explicitly ignore variables?
	3.9 Should there be support for recursive destructuring?

	Acknowledgments

