
P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

1

Modules, Componentization, and
Transition

Gabriel Dos Reis Pavel Curtis

Microsoft

Abstract

We provide an analysis of constraints for a good, acceptable, and scalable module system

for modern C++. This analysis is based on decades of practical experience with

precompiled headers, and 40+ years of the include-file model, which has shown its limits.

The paper also discusses several migration strategies. The end goal is to stimulate a

technical discussion about the difficult choices we face in bringing C++’s compilation

model into the era of semantics-aware developer tools, and of smart distributed and

cloud build systems.

1 INTRODUCTION

“Modules” rank near the top of frequently requested features for C++, in particular C++17. By far, a

common expectation is programmer productivity, not only by ameliorating the “inner loop” (edit-build-

test), but also and primarily by bringing semantic structures that foster development tools like those

enjoyed by programmers using programming languages featuring first-class “module” constructs (e.g. C#,

Java, Ada, Python, etc.)

The current “module” proposal [1] being considered by the committee lists four fundamental goals:

1. Componentization

2. Isolation from macros

3. Scalable build

4. Semantics-aware developer tools

These goals are considered key to productivity.

Componentization is essential for any module system for C++ in order to deliver expected productivity at

scale. Ideally, there should be a sufficiently simple and direct linguistic support for programmers to

express

a) Component boundaries: what is consumable from outside vs. what is internal to a component

b) Dependencies on components: what other components are required

Furthermore, we suspect that without componentization, a module system for C++ that aims only for

“scalable build” would essentially be a minor variation of “Precompiled Headers” (PCHs). Three decades

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

2

of experience with PCHs in heterogeneous environments and billions lines of code strongly suggest they

are not the module system we have been looking for.

Macro isolation is another essential ingredient for programming at large. Macros make it hard, if not

impossible, for tools to “understand” program source code. It is far too easy to underestimate how much

drag they constitute on development tools and developer productivity. These problems have been

extensively documented [2] [3] [4]. The take-away from previous attempts at limiting the reach of macros

is that any modification to the preprocessor is bound to fragment the community: some would consider

any improvement to the preprocessor goes too far, and others not far enough. Furthermore, for obvious

compatibility reasons, any such improvement can only add to the existing mess.

A good module system for C++ should live up to the C++ tenet of zero-overhead abstraction: you don’t

pay for what you do not use. The current compilation model, based on header files, actively violates that

principle since a preprocessor #include directive is essentially a textual copy-and-paste directive,

ensuring that the whole contents of a source file is repeatedly processed, regardless of which entity is

actually used. Ideally, an entity from a consumed component should not need (re)processing if it does

not affect the semantics of a program.

Finally, modules should support the flourishing of tools that “understand” source code and development

tools such as refactoring, dependency tracking, etc. A distributed build system can use semantics

information from components to decide whether a source file need recompilation, or whether it can be

shared across build instances.

In summary, goals (1), (2) and (4) can be seen as both leading directly to, and being necessary for (3).

2 COMPILATION MODEL

Processing a C++ source file is formally divided into 9 translation phases:

i. Translation phases 1 through 4 comprise what is traditionally referred to as preprocessing. These

phases have no knowledge of the core C++ language rules, e.g. lexing, parsing, scoping, etc. No

preprocessing construct survives beyond this stage.

ii. Translation phases 5 through 7 deal with lexical, grammatical, and static semantics rules. During

these semantics phases, the preprocessor is no longer called upon in any observable way.

iii. Translation phase 8 is colloquially known as the “template instantiation phase”, since it deals with

producing and analyzing required template specializations.

iv. Finally, translation phase 9 is the linking phase where all translation units and instantiation units

making up a program are combined and external symbol references are resolved.

This compilation model is ingrained in day-to-day programming tasks and tools. Ideally, an acceptable

module system should not disturb this subdivision of phases, so that it does not do violence to developer

tools.

It should be noted that after the preprocessing phase, programmers are guaranteed that there are no

traces of preprocessing constructs left that will come and bite them when they least expect it. E.g., it is

common for a developer investigating a bug, or for analysis tools, to request preprocessed source files,

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

3

e.g. with no preprocessor dependency. Ideally, an acceptable module system for C++ should maintain

these expectations. For example, if a code fragment such as

import M;

revives prior preprocessing states (e.g. when M was compiled), then it would violate the spirit of, and the

expectation that “the preprocessor is never revived by the lexer or parser.”

This implies that the interpretation of a module 'import' directive, which is and must be a construct from

the lexical/grammatical/semantic level, should not have an impact on the preprocessing phases (e.g., by

introducing new macro definitions): the preprocessor should not know about the 'import' directive, and

it cannot interpret the directive itself, so it similarly cannot change its macro-definition environment in

response to the appearance of that directive. Said simply: importing a module should not introduce new

preprocessor-macro definitions or change existing ones.

3 LIVING WITH HISTORY

If we can’t modify the preprocessor, if we can’t modify the language to bring fundamental preprocessor

constructs (such as macro expansion) to the semantics processing phase, then how do we handle existing

massive lines of code? Does a good and acceptable module system for C++ have to be “all-or-nothing”?

Is there any transition story? Is it top-down? Is it bottom up?

Well, first not all existing code are immutable. Some will evolve, others won’t for various reasons. For

the codes that can evolve (e.g., because they are under active development), the transition must be

toolable. That is, the module system should lend itself to an automatic or semi-automatic

“modularization” process for scalable adoption.

For the codes that cannot be changed or that cannot evolve, we must be willing to consider extra-linguistic

solutions, possibly ones that are part of the build setup, if we want to bring some of the benefits of

modules to those unchanging codes, or just accept that they will forever be consumed via preprocessing

constructs.

So, how bad is it?

4 A TALE OF TWO IMPLEMENTATIONS

To this date, there are two ongoing, experimental implementations of module systems for C++. One is in

Clang, and the other in Microsoft Visual C++ Dev 14 Update 1. What follows is a brief introduction and

analysis of both systems.

4.1 CLANG MODULES
The authoritative reference on “modules in Clang” at the time of this writing is the documentation

available at [5]. They were originally developed for Objective-C (and Clang’s implementation of C), later

extended to C++. The basic idea is to express how a header file may be thought of as a module. Presently,

there is no C++ source-level construct for defining a module or using modules in Clang. Rather, the Clang

team has consistently expressed their desire to track WG21’s work on the subject. Clang’s module

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

4

semantics is achieved by altering the sequence of standard translation phases when the preprocessing

directive #include is encountered in the input source code, by automatically mapping certain header files

to “modules”. The altered behavior is accomplished by authoring a sort of “configuration file” (not a C++

source file) named module.modulemap placed alongside the set of header files intended to be treated as

modules. Here is a simplified example from [5]:

module std {

module assert {

textual header “assert.h”

header “bits/assert-decls.h”

export *

}

module complex {

header “complex.h”

export *

}

// …

}

This states that a certain set of header files are to be treated specially by the compiler when an #include

preprocessor directive nominates them. In particular, an inclusion of “assert.h” will always result in

textual copy-and-paste (i.e. the standard copy-and-paste semantics) of the contents of assert.h. On the

other hand, given a directive including “complex.h”, the compiler will first look for an existing pre-

compiled version of that header file. If present, its compiled contents will be made available to the

translation unit requesting the inclusion. In case of no existing precompiled version of “complex.h”, the

compiler starts a fresh instance of itself, compiles “complex.h”, caches the result for later reuse, and

continues processing as if that header had already been compiled. Unlike the “assert.h” case (where a

textual inclusion is always performed), the “complex.h” follows different translation rules. In particular,

macros defined in such “modular” header files are subject to the following rules [5]:

 Each definition and undefinition of a macro is considered to be a distinct entity.

 Such entities are visible if they are from the current submodule or translation unit, or if they were

exported from a submodule that has been imported.

 A #define X or #undef X directive overrides all definitions of X that are visible at the point of the

directive.

 A #define or #undef directive is active if it is visible and no visible directive overrides it.

 A set of macro directives is consistent if it consists of only #undef directives, or if all #define

directives in the set define the macro name to the same sequence of tokens (following the usual

rules for macro redefinitions).

 If a macro name is used and the set of active directives is not consistent, the program is ill-formed.

Otherwise, the (unique) meaning of the macro name is used.

These rules are illustrated in the reference documentation [5] with the following example: consider that

 <stdio.h> defines a macro getc (and exports its #define)

 <cstdio> imports the <stdio.h> module and undefines the macro (and exports its #undef)

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

5

then the #undef overrides the #define, and a source file that imports both modules in any order will not

see getc defined as macro.

Module.modulemap essentially provides a form of macro visibility management.

4.2 VISUAL C++ 2015 UPDATES
Starting with Update 1 of its 2015 release, Visual C++ features an ongoing implementation of the module

proposal presented in [1]. That design leaves the standard phases of translation untouched, therefore

allowing existing development tools and workflow to continue working along common expectations. On

the other hand, it introduces into the core language direct support for:

 Expressing component boundaries through module declarations and “export declarations”

 Expressing component dependencies through “import directives”

A module declaration identifies, in the source file, the module to which a given translation unit belongs.

An export declaration states that a given entity is accessible from the outside of a module. The set of

export declarations in a module form the interface of that module. An import statement makes available

to the current translation unit all the entities exported by the imported module. Modules are isolated

from macros defined in imported modules. That is, a macro defined in an imported module does not

affect the importing translation unit; conversely, a macro defined in a translation unit does not affect the

module it imports or their interfaces. Furthermore, that proposal has no provision for exporting macros

from modules.

4.2.1 Producing and Consuming Module Interfaces

Defining, compiling, and consuming a module is simple. For example, assuming a C++ source file src.ixx

contains the following

import Calendar.Months; // for Chrono::Month

import Calendar.Days; // for Chrono::Day

module Calendar.Dates; // module Calendar.Dates follows

namespace Chrono {

export struct Date {

 Date(Day, Month, int);

 // …

};

}

When this module unit is compiled invoking the compiler as

cl.exe –module src.ixx

the compiler processes the source file producing an object file src.obj (as usual) and a file named

Calendar.Dates.ifc. The latter, called an IFC file, is a binary file describing the full semantic graph of

the interface of Caldendar.Dates. That is, the content of that file represents the result of compiling all

declarations exported from the module Calendar.Dates. Every (compiled) module has an IFC file. It is

the only compilation artifact necessary to consume a module. When the compiler sees an import

declaration, it locates the corresponding IFC file, loads its contents, and makes the interface available for

consumption. Note that the IFC file need not be stored in a file named after the module. An IFC can be

embedded in any binary file, including in a “static library archive” hence providing a coherent “self-

descriptive” component with a well-defined boundary and good isolation. IFCs can be grouped together

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

6

with other build artifacts for package delivery purposes; however, “packaging” and “package delivery” are

outside the scope of modules proper and of the current module proposal.

An IFC is completely toolable. That is, it can be inspected for discovery of exported entities; in particular,

it does not require a C++ compiler once produced. Similarly, an IFC can be edited without requiring a C++

compiler. This is obviously useful for “smart” build systems and other development tools, including IDEs,

debuggers, runtime systems, etc. Note that an IFC is not part of an executable program: its contents are

largely logical and contain no executable code. This leads to various scenarios for transition and for coping

with “legacy” codes.

4.2.2 Bridging Old and New

An existing header file header.h can be made consumable as a module (i.e. via an import declaration,

complete with macro isolation benefits) as follows

i. Make a C++ source file (say src.cxx) comprising of just #include “header.h”

ii. Compile that source with the command line

cl.exe –module:export src.cxx –module:name MyModule

This has the effect of producing an IFC for a module named MyModule whose interface is the set

of all namespace-scope declarations with external linkage.

This technique can be used to produce IFCs allowing consumption of “legacy” components (that will never

evolve to modules) from codes using modules. It is amenable, with further tooling, to automatic or semi-

automatic migration to modularization for codes that desire to evolve.

For legacy codes that produce interfaces via macros, there is an additional compiler switch to retain a

macro state at the end of the “module translation unit” and emit it in a wrapper header file for the

consumer to use. For example

cl.exe –module:export src.cxx –module:name MyModule –module:wrapper new-

header.h –module:wrapperMacros macro-file

produces the IFC file MyModule.ifc along with a wrapper header file new-header.h. This wrapper header

file essentially contains an import declaration nominating MyModule, followed by a series of preprocessing

directives defining all macros listed in the file macro-file that are active at the end of the translation unit

src.cxx. This way, the consumer can just include “new-header.h”: it will benefit from module semantics

and a certain level of macro isolation as specified. Furthermore, this solution retains the traditional

separation of preprocessor constructs and core language constructs.

5 CONCLUSION

Componentization, macro isolation, semantics-aware development tools are essential ingredients, just as

important as achieving scalable build throughput for modern C++. In search of transitional scenarios for

large scale adoption, it is essential not to introduce new constructs in the language that will further

compromise macro isolation. This document outlined such a scenario for the module proposal [1] as being

P0141R0 2015-10-05 Reply-To: gdr@microsoft.com

7

implemented in the Visual C++ compiler. This approach maintains the standard phases of translation and

the principle that macros are introduced by preprocessor constructs, not language feature, all while

introducing no new preprocessing directives.

6 REFERENCES

[1] G. Dos Reis, M. Hall and G. Nishanov, "A Module System for C++ (Revision 4)," 2015.

[2] B. Stroustrup, "The Design and Evolution of C++," Addison-Wesley, 1994.

[3] B. Stroustrup, "#scope: A simple scoping mechanism for the C/C++ preprocessor," 2004.

[4] T. Plum, "The "scope" extension for the C/C++ preprocessor," 2004.

[5] Clang Modules, "Clang 3.8 Documentation," 03 October 2015. [Online]. Available:

http://clang.llvm.org/docs/Modules.html.

