
P0138R2 2016-03-04 Reply-To: gdr@microsoft.com 

1 
 

Construction Rules for enum class Values 
 

Gabriel Dos Reis 

Microsoft 
 

Abstract 

This paper suggests a simple adjustment to the existing rules governing conversion from 

the underlying type of a scoped enumeration to said enumeration. This effectively 

supports programming styles that rely on definition of new distinct integral types out of 

existing integer types, without the complexity of anarchic integer conversions, while 

retaining all the ABI characteristics and benefits of the integer types, especially for system 

programming. 

1 INTRODUCTION 

 
There is an incredibly useful technique for introducing a new integer type that is almost an exact copy, yet 
distinct type in modern C++11 programs: an enum class with an explicitly specified underlying type.  
Example: 
 

   enum class Index : uint32_t { };    // Note: no enumerator. 

 
One can use Index as a new distinct integer type, it has no implicit conversion to anything (good!)  This 
technique is especially useful when one wants to avoid the anarchic implicit conversions C++ inherited 
from C.  For all practical purposes, Index acts like a "strong typedef" in C++11. 
 
There is however, one inconvenience: to construct a value of type Index, the current language spec 
generally requires the use a cast -- either a static_cast or a functional notation cast.  This is both 
conceptually wrong and practically a serious impediment.  Constructing an Index value out of uint32_t 
is not a cast, no more than we consider 

 

         struct ClassIndex { uint32_t val; }; 

 

         ClassIndex idx { 42 };          // OK 

  ClassIndex idx2 = { 7 };        // OK 

 

a cast.  It is a simple construction of a value of type ClassIndex, with no narrowing conversion. I claim 
the current rule for scoped enumeration is too strict.   For instance, we should be able to write 

 

         int f(Index); 

         auto a = f({42}); 



P0138R2 2016-03-04 Reply-To: gdr@microsoft.com 

2 
 

as suggested in the original proposal.  However, accepting that example – where the argument type is not 

syntactically written – may change the meaning of existing C++ programs.  That is the case for example, if 

there was an overload of f with parameter type ClassIndex.  However, that is not the case for initializers 

in variable declaration (direct-initialization or copy-list-initialization, or whatever other form we have in 

store.) The following paragraph illustrates examples of initialization that are intended to be accepted or 

rejected (as indicated in the comment.) 

enum class byte : unsigned char { }; 

const byte& r = { 42 };         // error 

struct A { byte b; }; 

A a = { { 42 } };               // errr 

 

enum E : int { }; 

void f(E); 

E e { 0 }; // OK 

E e = { 0 }; // error 

E e = E{ 0 }; // OK 

const E& e { 0 }; // OK 

const E& e = { 0 }; // error 

f({ 0 }); // error 

f(E{ 0 }); // OK 

E g() { 

  return { 0 }; // error 

} 

 

struct X { 

  E e { 0 }; // OK 

  E e = { 0 }; // error 

  X() : e{ 0 } { } // OK 

}; 

E* p = new E{ 0 }; // OK 

 

This proposal suggests we allow an implicit/non-narrowing conversion from a scoped enumeration's 
underlying type to the enumeration itself, when its definition introduces no enumerator and the source 
uses a list-initialization syntax.  This is safe and support very useful programming techniques.  For example, 
you could introduce new integer types (e.g. SafeInt) that enjoy the same existing calling conventions as 
its underlying integer type, even on ABIs expressly designed to penalize passing/returning structures by 
value.   This supports a zero-overhead abstraction technique.  It has been found very popular in practice 
by system programmers and application programmers. 
 
Strictly speaking, this change could be detected by SFINAE tricks; however, the benefit is much greater -- 
and the SFINAE trick detection is more useful in the other direction, which I am not proposing to change. 

2 CHANGES FROM PREVIOUS VERSIONS 

This paper was reviewed by EWG at the Fall 2015 meeting in Kona, HI.  It was approved by EWG for C++17. 

The original wording was reviewed by CWG at that meeting, with suggested tweaks and design questions 

for EWG.  The design questions were resolved by EWG. 



P0138R2 2016-03-04 Reply-To: gdr@microsoft.com 

3 
 

 The phrase “integer class” was removed.  That phrase was introduced to designate existing 

construct in the language (scoped enums with no enumerators), but it appears to cause confusion 

as to whether the proposal was suggesting a new type definition mechanism.  It was and is not. 

 The elision of the type name is no longer permitted in function calls, for backward compatibility. 

 The construct is allowed also for traditional enums with fixed underlying type. 

EWG did consider the request of extending the relaxation suggested in this paper to enumerations with 

declared enumerators, but ultimately rejected that suggestion. 

3 WORDING 

Add a bullet between (3.8) and (3.9) to paragraph 8.5.4/3 as follows: 

Otherwise, if T is an enumeration with a fixed underlying type (7.2), the initializer-list has 

a single element v, and the initialization is direct-list-initialization, the object is initialized 

with the value T(v) (5.2.3); if a narrowing conversion is required to convert v to the 

underlying type of T, the program is ill-formed. [Example: 

enum byte : unsigned char { }; 

byte b { 42 };    // OK 

byte c = { 42 };    // error 

byte d = byte{ 42 };   // OK; same value as b 

byte e { -1 };                                                 // error 

struct A { byte b; }; 

A a1 = { { 42 } };               // error 

A a2 = { byte{ 42 } };           // OK 

 

void f(byte); 

f({ 42 });                             // error 

 

enum class Handle : uint32_t { Invalid = 0 }; 

Handle h { 42 };                                           // OK 

--end example] 

 



P0138R2 2016-03-04 Reply-To: gdr@microsoft.com 

4 
 

4 ACKNOWLEDGMENT 

This proposal formalizes the TINY suggestion made on EWG reflector [1]. It benefited from feedback from 

various people, in particular Richard Smith and Jens Maurer. After the draft of the first revision of this 

paper was completed, I was made aware of the paper authored by Walter Brown reviving the suggestion 

of “opaque typedef” [2].  The current suggestion is not incompatible with Walter’s proposal, nor is it a 

replacement or a competing proposal.  It does not provide any new way of introducing types or type 

names.  The only novelty (a valuable one!) is the removal of some syntactic rules surrounding value 

construction of certain enums. This proposal is more of a completion of Oleg Smolsky’s proposal [3], but 

for enumerations. 

 

 

5 REFERENCES 

 

[1]  Gabriel Dos Reis, [TINY] enum class conversion and conversion from underlying type when no 

enumerator is introduced, 2015. Reflector message c++std-ext-16296 posted on January 7, 2015.  

[2]  Walter Brown, "Function Aliases + Extended Inheritance = Opaque Typedefs," ISO/IEC 

JTC1/SC22/WG21, 2015. Document number P0109R0 

[3]  Oleg Smolsky, "Extension to aggregate initialization," ISO/IEC JTC1/SC22/WG21, 2015. Document 

numnber P0017R0 

 

 

 


