

Doc number: P0126R2
Revises: P0126R1, N4195
Date: 2016-03-13
Project: Programming Language C++, Concurrency Working Group
Reply-to: Olivier Giroux ogiroux@nvidia.com, Torvald Riegel triegel@redhat.com
Thanks-to: Jeffrey Yasskin

std::synchronic<T>
Atomic	objects	make	it	easy	to	implement	inefficient	synchronization	in	C++.	The	first	problem	
that	users	typically	have,	is	poor	system	performance	under	oversubscription	and/or	contention.		
The	second	is	high	energy	consumption	under	contention,	regardless	of	oversubscription.	

At	issue	is	a	trade-off	centered	on	resource	arbitration	for	synchronization,	placing	in	tension:	

• The	focus	of	modern	platform	architecture	is	on	lowering	total	energy	use.	

• The	focus	of	performance-critical	software	is	on	minimizing	latency.	

Implementations	 could	 do	 significantly	 better	 with	 more	 semantic	 information.	 There	 exists	
different	native	support	for	efficient	polling	on	all	major	software	and	hardware	platforms.		We	
now	propose	“synchronic”	objects,	an	atomic	library	abstraction	for	this	diverse	support.	

For	more	background,	see	P0126R0	and	Futexes	are	Tricky.	

A	simplifying	abstraction	

Synchronic	 objects	 make	 it	 easier	 to	 implement	 scalable	 and	 efficient	 synchronization	 using	
atomic	objects.		The	easiest	way	to	use	a	synchronic	object	is	to	declare	an	expected	atomic	value	
for	synchronization,	and	notify	when	an	atomic	object	should	be	compared	against	this	value.		

For	example:	
 //similar to std::latch (n4538)
 //using std::hardware_false_sharing_size (n4523)
 class example {
 ...
 void sync_up_my_team() {
 if(count.fetch_add(-1)!=1)
 while(!released.load());
 sync.wait(released, true);
 else
 released.store(true);
 sync.notify_all(released, true);
 }
 ...
 alignas(hardware_false_sharing_size) atomic<int> count;
 alignas(hardware_false_sharing_size) atomic<bool> released;
 synchronic<bool> sync;
 }; 	

C++	Proposed	Wording	
Apply	these	edits	to	the	working	draft	of	the	Concurrency	TS	on	03/03/2016,	N4399.	

Feature	test	macros	

The __cpp_lib_synchronic	feature	test	macro	should	be	added.	

29.2	Header	<atomic>	synopsis:	
namespace std {
 namespace experimental {
 inline namespace concurrency_v2 {

 //	29.9,	synchronic	operations	
 enum class wait_hint {
 optimize_latency,	
 optimize_utilization	
 };

 template <class T> class synchronic;

 } // namespace concurrency_v2
 } // namespace experimental
} // namespace std

29.9	Synchronic	objects		 	 	 	 	 	 	 	[atomics.synchronic]	
1 Synchronic	objects	provide	low-level	blocking	primitives	used	to	implement	synchronization	with	

atomic	 objects.	 Class	 synchronic<T>	 encapsulates	 an	 efficient	 algorithm	 to	 wait	 until	 a	
condition	 is	met,	evaluated	over	a	single	object	of	 the	corresponding	class	atomic<T>.	This	
facility	neither	requires	nor	provides	mutual-exclusion	between	threads	on	its	own.	

2 The notify_one and notify_all member functions are notifying functions. The wait,
wait_for_change, wait_for_change_until and wait_for_change_for member
functions are waiting functions.

3 Concurrent	executions	of	the	notifying	and	waiting	functions	do	not	introduce	data	races.	If	they	
invoke	a	user-provided	function,	that	function	may	still	introduce	data	races.	

4 Executions	 of	 waiting	 functions	 may	 block	 until	 they	 are	 unblocked	 by	 a	 notifying	 function,	
according	to	each	function’s	effects.	

5 [Example:	A	simple	latch	pattern:	
 atomic<int> count = 2; //	number	of	threads	participating	
 atomic<bool> ready = false;
 synchronic<bool> sync;

 void sync_up_my_team() { //	invoked	once	each	thread
 if(count.fetch_add(-1)!=1)
 sync.wait(ready, true); //	all	but	the	last	thread	blocks	
 else
 sync.notify_all(ready, true); //	last	thread	unblocks	all	the	others
 }

–	End	Example.]	

6 [Note:	Programs	using	synchronic	objects	may	be	susceptible	to	transient	values,	an	issue	known	
as	 the	 ABA	 problem,	 resulting	 in	 continued	 blocking	 if	 the	 wait	 function’s	 condition	 is	 only	
temporarily	met.	–	End	Note.]		

29.9.1 Class synchronic	 	 	 	 	 	 	[atomics.synchronic.class]	
namespace std {
 namespace experimental {
 inline namespace concurrency_v2 {

 template <class T>
 class synchronic {
 public:

 synchronic();
 ~synchronic();
 synchronic(const synchronic&) = delete;
 synchronic& operator=(const synchronic&) = delete;
 synchronic(synchronic&&) = delete;
 synchronic& operator=(synchronic&&) = delete;

 void wait(const atomic<T>& object, T desired,

 memory_order order = memory_order_seq_cst,
 wait_hint hint = wait_hint::optimize_latency) const;
 void wait_for_change(const atomic<T>& object, T current,
 memory_order order = memory_order_seq_cst,
 wait_hint hint = wait_hint::optimize_latency) const;

 template <class Clock, class Duration>
 bool wait_for_change_until(const atomic<T>& object, T current,
 chrono::time_point<Clock,Duration> const& abs_time,
 memory_order order = memory_order_seq_cst,
 wait_hint hint = wait_hint::optimize_latency) const;
 template <class Rep, class Period>
 bool wait_for_change_for(const atomic<T>& object, T current,
 chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst,
 wait_hint hint = wait_hint::optimize_latency) const;

 void notify_all(atomic<T>& object, T value,
 memory_order order = memory_order_seq_cst);
 template <class F> void notify_all(atomic<T>& object, F func);

 void notify_one(atomic<T>& object, T value,
 memory_order order = memory_order_seq_cst);
 template <class F> void notify_one(atomic<T>& object, F func);
 };

 } // namespace concurrency_v2
 } // namespace experimental
} // namespace std

1 [Note:	synchronic<T>	probably	is	not	an	empty	type.	–	End	Note.]		

synchronic();

2 Effects:	Constructs	an	object	of	type	synchronic<T>.	
3 Throws:	system_error	(19.5.6).	

~synchronic();

4 Requires:	No	threads	are	blocked	on	this.		
5 Effects:		

1. May	block	until	executions	of	notifying	functions	on	this	have	completed.	[Note:	
This	property	generally	allows	a	program	to	destroy	a	synchronic	object	immediately	
after	it	synchronizes	with	it.	To	ensure	correctness,	the	program	should	also	generally	
avoid	causing	side-effects	to	the	atomic	object	outside	of	notifying	functions.	–	end	
note.][Example:		

struct broken_one_time_channel {
 atomic<bool> set = false;
 synchronic<bool> sync;
 void receive() {
 sync.wait(set, true); //	May	see	set == true	before	notify_all	executes.	
 //	Reads	the	message.	
 delete this; //	May	occur	before	or	during	call	to	notify_all;	lifetime	of	sync	ends.	
 }
 void send() {
 //	Writes	the	message
 set = true; //	Uses	set	outside	of	notify_all;	may	allow	sync	to	be	destroyed	before	
next	line.
 sync.notify_all(set, [](auto&){}); //	error:	races	with	end	of	sync	lifetime.	
	
 //	OK:	sync.notify_all(set,true);	
 //	OK:	sync.notify_all(set,[](auto& a){ a = true;});	
 }
 };

–	End	Example.]	

2. Destroys	the	object.	

void wait(const atomic<T>& object, T desired, memory_order order,
 wait_hint hint) const;
template <class F>
void wait_for_change(const atomic<T>& object, T current,
 memory_order order, wait_hint hint) const;
template <class Clock, class Duration>
bool wait_for_change_until(const atomic<T>& object, T current,
 chrono::time_point<Clock,Duration> const& abs_time, memory_order order,
 wait_hint hint) const;

6 Let	the	return	condition	be:	

− for	the	first	form	of	the	function,	object.load(order) == desired;	
− for	the	second	form,	object.load(order) != current;	

− for	 the	 third	 form,	object.load(order) != current,	 or	when	 the	absolute	
timeout	expires.	

7 Effects:	Each	execution	of	a	waiting	function	is	performed	as:	
1. Invokes	object.load(memory_order_relaxed).	[Note:	This	observes	the	result	

of	an	operation	in	the	modification	order	of	object.	–	End	Node.]	
2. Evaluates	the	return	condition	then,	if	it	is	satisfied,	returns.	The	third	form	may	return	

spuriously.	
3. Blocks.	
4. Is	unblocked:	

− As	a	result	of	some	notifying	operations,	as	described	in	that	function's	effects.	
− In	the	third	form,	when	the	absolute	timeout	expires.	
− At	the	implementation's	discretion.	

5. Each	time	the	execution	unblocks,	these	effects	repeat	from	step	1.	
8 Returns:	for	the	third	form,	true	if	the	return	condition	was	satisfied.	
9 Throws:	system_error	(19.5.6).	
10 Remarks:	the	value	of	hint	is	only	informative.	The	value	optimize_latency indicates	

to	the	implementation	that	latency	overheads	should	be	minimized	for	this	operation,	even	
if	it	increases	resource	utilization,	and	optimize_utilization	indicates	otherwise.	

template <class Rep, class Period>
bool wait_for_change_for(const atomic<T>& object, T current,
 chrono::duration<Rep, Period> const& rel_time, memory_order order,
 wait_hint hint) const;

11 Effects:	Equivalent	to:
 wait_for_change_until(object, current,
 chrono::steady_clock::now() + rel_time, hint);	

void notify_all(atomic<T>& object, T value, memory_order order);
template <class F> void notify_all(atomic<T>& object, F func);
void notify_one(atomic<T>& object, T value, memory_order order);
template <class F> void notify_one(atomic<T>& object, F func);

12 Requires:	func	 is	callable	with	the	signature	void(atomic<T>&)	and	does	not	invoke	a	

member	function	on	this.	
13 Effects:		

1. Invokes	object.store(value, order)	for	the	first	and	third	forms,	or	
func(object)	for	the	second	and	fourth.	If	that	operation	does	not	modify	object,	
the	notifying	function	has	no	effect.	Otherwise,	let	N	be	the	modification	of	object.	

2. If	notify_all	is	invoked,	unblocks	all	executions	of	waiting	functions	invoked	on	
this	and	object	that	blocked	after	observing	the	result	of	modifications	that	
precede	N	in	object's	modification	order.	

3. If	notify_one	is	invoked,	unblocks	at	least	one	execution	of	a	waiting	function	
invoked	on	this	and	object	that	blocked	after	observing	the	result	of	a	modification	
that	precedes	N	in	object's	modification	order,	if	any.	[Note:	Incorrect	use	of	
notify_one	leads	to	deadlock.	–	end	note.][Example:	

struct broken_ticket_mutex {
 atomic<int> dispensing = 0, serving = 0;
 synchronic<int> sync;
 void lock() {
 sync.wait(serving, dispensing++); //	Only	one	thread	waits	for	each	value.	
 }
 void unlock() {
 sync.notify_one(serving,
 [](auto& a){ a++; }); //	error:	may	unblock	only	threads	that	can’t	continue.	

 //	OK:	sync.notify_all(serving, [](auto& a){ a++; });	
 }
 };

–	End	Example.]	
14 Throws:	system_error	(19.5.6)	or	any	exception	thrown	by	func.	

