
Overload sets as function arguments

Andrew Sutton <asutton@uakron.edu>

Date: 2016-02-12

Document number: P0119R1

Introduction

I want to be able to use the names of overloaded functions as arguments to
algorithms. Suppose I have a generic algorithm that transforms a sequence of
values by some function f. I want to write it like this:

template<typename I>
void apply_f(I first, I last)
{

std::transform(first, last, first, f);
}

If f names a (single) function, then this just works, but if it names an overloaded
set or a function template, the program is ill-formed. That’s unfortunate. First,
it’s inconsistent: if f looks like a function, then I should be able to use it as a
function. Second, there is no more obvious way to express my intent. The best I
can do today is to use a lambda expression that then calls the overload set. Like
this:

template<typename I>
void apply_f(I first, I last)
{

std::transform(first, last, [](auto const& x) { return f(x); }
}

I would very much prefer to write just f.

This paper proposes the use of overload sets as function arguments and variable
initializers. In addition to the use of functions above, we would also like to use
operator names as well. For example, I want to call sort like this:

std::sort(first, last, (>));

And this would be similar to writing:

std::sort(first, last, [](auto const& a, auto const& b) { return a > b; };

1

And I should be able to define function objects using the same technique:

auto gt = (>);

This feature can be provided without introducing runtime overhead.

How it works

The mechanism that makes this language feature work is to extend template ar-
gument deduction to handle cases where a function argument is an id-expression
naming an overload set, and to synthesize a lambda-expression for the id-
expression.
In this example:

template<typename T>
void f(T&);

template<typename I>
void apply_f(I first, I last)
{

std::transform(first, last, first, f);
}

The unqualified-id f refers to a set of overloaded functions (a template is a family
of functions). We can automatically transform unqualified-id into the following
lambda-expression.

[](auto&& x) -> decltype(auto)
{

return f(std::forward<decltype(x)>(x));
};

Note that f is still an unqualified-id in the lambda. This means that argument
dependent lookup will apply. This makes sense because the user clearly wrote f
as unqualified-id. I discuss qualified lookup below.
NOTE: I’m not sure if the return type should be decltype(auto) or auto&&.
My feeling is that using decltype(auto) will lead to fewer surprises.
Similarly, the use of operator>, either as an argument or as the initializer of a
variable would correspond to this lambda expression:

[](auto&& a, auto&& b) -> decltype(auto)
{

return std::forward<decltype(a)>(b) > std::forward<decltype(b)>(b);
};

2

The proposed mechanism should not affect any existing overload resolutions. The
only time this rule is engaged is when an overload set is being deduced against
a parameter whose type is just plain T. This currently results in a deduction
failure, and hence ill-formed programs.

Deductions and conversions involving id-expressions that name a single function
are not affected by this feature.

Qualified lookup

Using a qualified-id that names an overload set results in qualified lookup.

void sort(first, last, N::f);

[](auto&&... args) -> decltype(auto)
{

return operator>(std::forward<decltype(args)>(args)...);
}

Yields this lambda:

[](auto&&... args) -> decltype(auto)
{

return N::f(std::forward<decltype(args)>(args)...);
}

Operators

To support the shorthand for operators, we’ll have to add a new category of
unqualified-id. These ids simply refer to the generic lambdas that invoke the
operator.

In general, the rules for synthesizing lambdas depend on the operator. For
operators that have only a binary or unary form, we can synthesize the lambda
directly:

[](auto&& a, auto&& b) -> decltype(auto)
{

return std::forward<decltype(a)>(a) op std:forward<decltype(b)>(b);
}

For operators that have both unary and binary versions, we would need to
synthesize a new lambda closure type that accepted either. That type might
look like this:

3

struct polymprhic_lambda
{

template<typename T>
decltype(auto) operator()(T&& x) const
{

return op std::forward<T>(x);
}

template<typename T, typename U>
decltype(auto) operator()(T&& a, U&& b) const
{

return std::forward<T>(a) op std:forward<U>(b);
}

}

Here op stands for the unary/binary operator.
The function call and index operators would have the following forms:

[](auto&& f, auto&&... arg) -> decltype(auto)
{

return std::forward<decltype(f)>(f)(std::forward<decltype(arg)>(args)...);
}

[](auto&& x, auto&& y) -> decltype(auto)
{

return std::forward<decltype(x)>(x)[std::forward<decltype(y)>(y)...];
}

Operator functions

We should also be able to use operator-function-ids to name user-defined overloads.
For example, the use of operator> here

std::sort(first, last, operator>);

would result in a lambda expression like this:

[](auto&&... args) -> decltype(auto)
{

return operator>(std::forward<decltype(args)>(args)...);
}

Note that I’m being lazy with the lambda here. The rules for synthesizing this
lambda should be identical to those for (>).

4

Forwarding calls to members

It would be nice if this worked for member functions too.

struct S
{

void f(int&);
void f(std::string&);

};

S s;
std::transform(first, last, s.f);

When synthesizing a lambda for a class member access, we need to capture only
the complete object (s) and build function call using the same postfix-expression.

auto&& [&s](auto&&... args) -> auto&&
{

return s.f(std::forward<Args>(args)...);
}

Proposed wording

5.1.1 General [expr.prim.general]

Add a new kind of unqualified-id named operator-lambda-id.

unqualified-id:
identifier
operator-function-id
operator-lambda-id
...

operator-lambda-id:
(operator)

Add the following paragraph somewhere:

An operator-alias-id denotes a generic lambda that applies an set of operands
to the operator. The operator in an operator-alias-id shall not be new, new[],
delete or delete[]. The corresponding lambda and its closure type depend on
the operator:

• If the operator is (), the lambda-expression is

5

[](auto&& f, auto...&& args) -> decltype(auto)
{

return std::forward<decltype(a)>(a)(std::forward<decltype(args)>(args)...);
}

• If the operator is [], that lambda-expression is

[](auto&& a, auto&& b) -> decltype(auto)
{

return std::forward<decltype(a)>(a)[std::forward<decltype(b)>(b)];
}

• If the operator is one of +, -, *, or &, that expression is a prvalue object of
unique, unnamed, non-union class type that is equivalent to

struct closure_type
{

template<typename T>
T&& operator()(T&& x) const -> decltype(auto)
{

return @ std::forward<T>(x);
}
template<typename T, typename U>
T&& operator()(T&& a, U&& b) const -> decltype(auto)
{

return std::forward<T>(a) @ std::forward<U>(b);
}

}

• Otherwise, that expression is the lambda-expression

[](auto&& a, auto&& b) -> decltype(auto)
{

return std::forward<decltype(a)>(a) @ std::forward<decltype(b)>(b);
}

14.8.2.1 Deducing template arguments from a function call
[temp.deduct.call]

Note: We want to synthesize a lambda expression from an id-expression in a
very narrow set of cases. In particular, we must be performing deduction of an
id-expression that names an overload set against an unadorned type template
parameter or placeholder type (i.e., a plain T) and not, for example, a type of
the form R(*)(Args...). Otherwise, these rules would conflict with paragraph
6. Add the following after paragraphs at the end of this section.

6

If P has type T where T is a type template parameter and A is an id-expression
that names a set of overloaded functions, deduction is performed against the
expression defined by the following rules.

• If A is an identifier f, that expression is the lambda-expression:

[](auto&&... args)
{

return f(std::forward<decltype(args)>(args)...);
}

• If A is the qualified-id N::f, that expression is the lambda-expression:

[](auto&&... args)
{

return N::f(std::forward<decltype(args)>(args)...);
}

• Otherwise, the program is ill-formed.

Issues

• The proposal is missing synthesis rules for pre/post-increment and decre-
ment.

• The current proposal does not support for conversion-ids or

Implementation experience

I started an implementation of this feature in GCC last year, but didn’t finish
it — not even close. Effectively, the implementation is capable of recognizing
when to synthesize the lambda expression from an id-expression, but not actually
synthesizing the lambda expression.

Related work

N3617 describes “lifting expressions”, which satisfy many of the same aims of this
proposal. However, it requires the lambda-introducer before the id-expression.
This extra annotation seems unnecessary to me.

N3617 goes further and suggests that we allow projection functions like this:

struct user
{

int id;

7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3617.htm

std::string name;
};

vector<user> users{ {4, "A"}, {1, "B"}, {3, "C"}, {0, "D"}, {2, "E"} };
sort(users.begin(), users.end(), ordered_by([]id));

I think that the current trend is that this problem be solved in the library and
not in the language. For example, the sort function could be extended to allow
the following:

sort(users.begin(), users.end(), &user::id);

This would have the same effect as example given above, although it’s not clear
what ordered_by should actually do or how id resolves to the member variable.

N3701 made brief mention of this feature, more or less in the form that it is
presented here. This paper incorporates the rules from N3617 for forming lambda
expressions from operators.

Acknowledgments

Thanks to Florian Weber for his comments and corrections on an early draft of
this document.

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3701.htm

	Overload sets as function arguments
	Introduction
	How it works
	Qualified lookup
	Operators
	Operator functions
	Forwarding calls to members
	Proposed wording
	5.1.1 General [expr.prim.general]
	14.8.2.1 Deducing template arguments from a function call [temp.deduct.call]

	Issues
	Implementation experience
	Related work
	Acknowledgments

