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1 Abstract

This paper introduces C++ a library function template define_task_block and a library class task_block
with member functions run and wait that together enable developers to write expressive and portable
fork-join parallel code.

2 Document Status and History

The proposals in this document are targeted at the next revision of the Parallelism TS. It has gone through
SG1 and LEWG review. LWG review and approval was completed during the October 2015 meeting in Kona.

The predecessor to this document, N4411, was approved by LEWG during the May 2015 meeting in Lenexa,
Kansas. The only technical changes to the formal wording since N4411 are the addition of a feature-test
recommendations section and a non-normative discussion of Execution agents. A number of editorial changes
were made after LWG review.

The predecessor to N4411 is N4088, which was approved by the Parallelism and Concurrency study group
(SG1) at the June 2014 meeting in Rapperswil. N4411 contains changes resulting from LEWG review at the
November 2014 meeting in Urbana-Champaign.

The changes from N4088 are described below.

2.1 New guarantee for outermost task block

An outermost task block is one that is created (by a call to define_task_block) when there is no previously-
active task block, i.e., at the outermost level of parallel execution. On return from the outermost task block,
the caller’s thread is restored as if the call had been to define_task_block_restore_thread. This new
guarantee was added to help ease the introduction of parallel libraries into serial code by guaranteeing that,
if called from serial code, a library function will always return on the same thread even if the library function
uses parallelism internally.

2.2 Added DECAY_COPY for run

We borrowed some of the language used to describe async for the invocation of the asynchronous function
in task_block::run. In particular, it is necessary to copy the function-object argument to run so that the
continuation can modify or destroy the argument without invalidating the asynchronously-called function.
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2.3 Naming changes

A number of identifiers have changed names in this proposal for the following reasons:

• What was previously called a “task region” is now called a “task block”. The term “task region” is
used in OpenMP to mean something that is just close enough in meaning to cause confusion and just
different enough that it cannot be considered the same thing. The C Parallel Language Extensions
study group (CPLEX) also adopted the term “task block”

• LEWG observed that task_region is a noun and that it is better for function names to be verbs or
verb phrases. Thus the verb “define” was prefixed to the names of the function templates.

• LEWG also observed that there was nothing final about task_region_final. Since the feature that
distinguished task_region_final from task_region was that the former is guaranteed to return on
the same C++ thread, the “final” suffix was changed to “restore_thread”.

• Finally, since the “define” prefix was added to the function templates, there was no longer a need for a
suffix to distinguish the class representing a task region from the function that defines it. Thus, the
“handle” suffix was dropped.

Putting all of these changes together, the mapping from old names to new names is summarized in the
following table:

Old (N4088) New (N4411)
task_region define_task_block
task_region_final define_task_block_restore_thread
task_region_handle task_block

2.4 Editorial changes

A number of non-technical changes were made to improve readability and prepare the document for review
by a wider audience:

• The issues section has been replaced by a Design Decisions and Alternatives section, now that all of the
issues have been resolved.

• This change history has been condensed.

2.5 Summary of previous changes

N4088
2014-06-21

Improved wording for asynchronous execution and thread switching.

N3991
2014-05-23

Added task_region_handle (now task_block) as an explicit means of communicating
between the definition of the task block and the run function. Changed from terminally
strict to fully strict semantics.

N3832
2014-01-17

Original version.
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3 Motivation and Related Proposals

The Parallelism TS, N4507, augments the STL algorithms with parallel execution policies. Programmers use
these as a basis to write additional high-level algorithms that can be implemented in terms of the provided
parallel algorithms. However, the scope of N4507 does not include lower-level mechanisms to express arbitrary
fork-join parallelism.
Over the last several years, Microsoft and Intel have collaborated to produce a set of common libraries known
as the Parallel Patterns Library (PPL) by Microsoft and the Threading Building Blocks (TBB) by Intel.
The two libraries have been a part of the commercial products shipped by Microsoft and Intel. Additionally,
the paper is informed by Intel’s experience with Cilk Plus, an extension to C++ included in the Intel C++
compiler in the Intel Composer XE product and also in gcc 4.9.
The define_task_block, task_block::run and task_block::wait functions proposed in this document
are based on the task_group concept that is a part of the common subset of the PPL and the TBB libraries.
A previous proposal, N3711, was presented to the Committee at the Chicago meeting in 2013. N3711 closely
follows the design of the PPL/TBB with slight modifications to improve exception safety.
This proposal adopts a simpler syntax than N3711 – one that is influenced by language-based concepts such
as spawn and sync from Cilk and async and finish from X10. It improves on N3711 in the following ways:

• The exception handling model is simplified and more consistent with normal C++ exceptions.
• Most violations of strict fork-join parallelism can be enforced at compile time (with compiler recognition

of the constructs, in some cases).
• The syntax allows scheduling approaches other than child stealing.

We aim to converge with the language-based proposal for low-level parallelism described in N3409 and related
documents.

4 Overview

Consider an example of a parallel traversal of a tree, where a user-provided function compute is applied to
each node of the tree, returning the sum of the results:

template<typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block([&](task_block& tb) {
if (n->left)

tb.run([&] { left = traverse(n->left, compute); });
if (n->right)

tb.run([&] { right = traverse(n->right, compute); });
});

return compute(n) + left + right;
}

The example above demonstrates the use of two of the functions proposed in this paper, define_task_block
and task_block::run.
The define_task_block function delineates a region in the program code potentially containing invocations
of tasks spawned by the run member function of the task_block class.
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The run function spawns a task, a unit of work that is allowed to execute in parallel with respect to the
caller. Any parallel tasks spawned by run within the define_task_block are joined back to a single thread
of execution on return from define_task_block.

run takes a user-provided function object f and starts it asynchronously – i.e. it may return before the
execution of f completes. The implementation’s scheduler may choose to run f immediately or delay running
f until compute resources become available.

A task_block can be constructed only by define_task_block because it has no public constructors. Thus,
run can be invoked (directly or indirectly) only from a user-provided function passed to define_task_block:

void g();

void f(task_block& tb)
{

tb.run(g); // OK, invoked from within define_task_block in h
}

void h()
{

define_task_block(f);
}

int main()
{

task_block tb; // Error: no public constructor
tb.run(g); // No way to call run outside of a define_task_block
return 0;

}

5 Task Parallelism Model

5.1 Strict fork-join task parallelism

The model of parallelism supported by the constructs in this paper is called strict fork-join task parallelism,
which has decades of research behind it and is the form of structured parallelism supported by all of
the prominent parallel languages, including Cilk, X10, Habanero, and OpenMP. These languages can be
subdivided into two groups: those with fully-strict semantics and those with terminally-strict semantics.

In both the fully-strict and terminally-strict models, there is a notion of a task block that “owns” all of the
tasks spawned within it. A child task spawned within a task block is automatically joined when the task
block ends (i.e., the program waits for it to finish before continuing).

In the fully-strict model (Cilk and Cilk Plus), a task cannot complete until it has joined with all of its
immediate child tasks. This form of fork-join parallelism provides strong guarantees and make a program easy
to reason about. The terminally-strict model (X10, Habanero, and OpenMP), relaxes this rule and allows a
child task to join with an ancestor rather than with its immediate parent. See Guo2009 for a description of
terminally strict computations.

We have elected to specify fully strict semantics because it is easier to implement efficiently and has a longer
track record. We did retain a feature of terminally-strict languages like X10: the option for a child task to
escape from a (synchronously-called) function. That is, a called function can spawn child tasks and return
without joining with those tasks. This (useful) feature is not directly related to parallel strictness because a
called function does not create a new task, but it does make the program less structured in that a function
may return to its caller before it has completely finished (i.e., while sub-tasks are still running). The dangers
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of this relaxation of structured function-call semantics are mitigated by the task_block, which, when passed
from caller to callee, gives both the programmer and the compiler enough information to recognize the call as
special.

This design choice means is that a task_block can be passed to a synchronous function call (or captured by
synchronously-called lambda function), but not to an asynchronous function call. Thus the following code
would have undefined behavior. This violation and most such innocent violations can be diagnosed by a
savvy compiler:

define_task_block([&](auto& tb) {
tb.run([&]{ g(tb); }); // Error, tb captured by asynchronous lambda
...

});

It is important to note that strict semantics (whether fully strict or terminally strict) is not a given in
parallelism proposals. Coming from a background in concurrency, many people look to unstructured constructs
such as std::async, citing their flexibility vs. the comparative rigidity of strict parallelism. While these
constructs have their place, the research has shown that fine-grain, large-scale parallelism benefits from a
highly-structured approach. Just as a compiler can implement much more efficient memory allocation for
(highly structured) local variables than for (unstructured) heap-allocated variables, so, too, can a compiler
and scheduler take advantage of the structure of strict fork-join parallelism to implement efficient queuing and
scheduling of parallel tasks. The algorithms described in N4507 neither require nor benefit from unstructured
parallelism.

5.2 Non-mandatory parallelism

Whereas concurrency constructs such as threads, producer-consumer queues, and the like are primarily about
program structure, parallelism constructs of the kind presented in this paper are primarily about maximum
exploitation of available hardware resources to achieve performance. Critical to this distinction is that, while
separate threads are independently expected to make forward progress, parallel tasks are not.

The most common scheduling technique for fork-join parallelism is called work-stealing. In a work-stealing
scheduler, each hardware resource (usually a CPU core) maintains a queue (which may or may not be FIFO)
of tasks that are ready to run. If a CPU’s queue becomes empty, it “steals” a task from the queue of some
other CPU. In this way, the CPUs stay busy and process their work as quickly as possible. Conversely, if all
of the CPUs are busy working on their own tasks, then those tasks will be executed serially until the queues
are empty. In fact, if the operating system allocates only one CPU to a process, then the entire parallel
computation would be completed on a single core. This automatic load balancing allows a program to scale
efficiently from one core to many cores without recompilation.

The constructs in this paper allow a programmer to indicate tasks that are permitted to run in parallel, but
does not mandate that they actually run concurrently. An important consequence of this approach, known as
“serial semantics,” is that a task in the queue will not make any forward progress until another task (on the
same or different core) completes, whether or not there is a dependency relationship between them. Thus,
using concurrency constructs such as producer-consumer queues between parallel tasks (including between
parent and child tasks or between sibling tasks) is a sure way to achieve deadlock. If the program is not valid
as a serial program, then it is not valid as a parallel program, either.

5.3 Execution agents

There is as yet no technical specification that yet uses the term “parallel execution agent”. It is therefore not
possible to refer to that term within the formal wording for this proposal. However, the parallel model for
the proposed constructs assumes parallel execution agents as described in P0072R0 as follows:
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Upon execution of task_block::run, two parallel execution agents are created: one to execute the function-
object argument to run, and the other to execute the continuation of the call to run, that is, the code
immediately following the call up to the next join point, which is the end of the task block or the next call
to task_block::wait. The initial execution agent boost blocks on those two execution agents. At the join
point, either the initial execution agent continues, or it transfers control to a new execution agent with the
same progress guarantees.

6 Formal Wording

The proposed interface is as follows. With the exception of define_task_block_restore_thread, the
implementation of each of the functions defined herein is permitted to return on a thread other than the one
from which it was invoked. [Editorial Note: See Thread switching in the design section for an explanation
of when this matters and how surprises can be mitigated. ]

6.1 Feature testing recommendations (informative) [task_block.feature.test]

For the sake of improved portability between partial implementations of various C++ standards, WG21
(the ISO technical committee for the C++ programming language) recommends that implementers and
programmers follow the guidelines in this section concerning feature-test macros. [Note: WG21’s SD-6 makes
similar recommendations for the C++ Standard itself. — end note]

Implementers who provide a new standard feature should define a macro with the recommended name,
in the same circumstances under which the feature is available (for example, taking into account relevant
command-line options), to indicate the presence of support for that feature. Implementers should define
that macro with the value specified in the most recent version of this technical specification that they have
implemented. The recommended macro name is “__cpp_lib_experimental_" followed by the string in the
“Macro Name Suffix” column.

Programmers who wish to determine whether a feature is available in an implementation should base that
determination on the presence of the header (determined with __has_include(<header/name>)) and the
state of the macro with the recommended name. (The absence of a tested feature may result in a program
with decreased functionality, or the relevant functionality may be provided in a different way. A program
that strictly depends on support for a feature can just try to use the feature unconditionally; presumably, on
an implementation lacking necessary support, translation will fail.)

Table 3: Table 1 – Significant features in this proposal

Title Macro name suffix Value Header
Task block parallel_task_block 201510 <experimental/task_block>

6.2 Header <experimental/task_block> synopsis [task_block.synopsis]

namespace std {
namespace experimental { namespace parallel { inline namespace v2 {

class task_canceled_exception;

class task_block;

template<typename F>
void define_task_block(F&& f);
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template<typename F>
void define_task_block_restore_thread(F&& f);

}}}
}

6.3 Class task_canceled_exception [task_block.task_canceled_exception]

class task_canceled_exception : public exception {
public:

task_canceled_exception() noexcept;
virtual const char* what() const noexcept;

};

The class task_canceled_exception defines the type of objects thrown by task_block::run or
task_block::wait if they detect that an exception is pending within the current parallel block. See
Exception Handling, below.

6.3.1 task_canceled_exception member function what [task_block.task_canceled_exception.what]

virtual const char* what() const noexcept;

Returns: An implementation-define NTBS.

6.4 Class task_block [task_block.class]

class task_block {
private:

~task_block();

public:
task_block(const task_block&) = delete;
task_block& operator=(const task_block&) = delete;
void operator&() const = delete;

template<typename F>
void run(F&& f);

void wait();
};

The class task_block defines an interface for forking and joining parallel tasks. The define_task_block
and define_task_block_restore_thread function templates create an object of type task_block and pass
a reference to that object to a user-provided function object.

An object of class task_block cannot be constructed, destroyed, copied, or moved except by the implemen-
tation of the task block library. Taking the address of a task_block object via operator& is ill-formed.
Obtaining its address by any other means (including addressof) results in a pointer with an unspecified
value; dereferencing such a pointer results in undefined behavior.

A task_block is active if it was created by the nearest enclosing task block, where “task block” refers to an
invocation of define_task_block or define_task_block_restore_thread and “nearest enclosing” means
the most recent invocation that has not yet completed. Code designated for execution in another thread
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by means other than the facilities in this section (e.g., using thread or async) are not enclosed in the task
block and a task_block passed to (or captured by) such code is not active within that code. Performing any
operation on a task_block that is not active results in undefined behavior.

When the argument to task_block::run is called, no task_block is active, not even the task_block on
which run was called. (The function object should not, therefore, capture a task_block from the surrounding
block.) [Example:

define_task_block([&](auto& tb) {
tb.run([&]{

tb.run([] { f(); }); // Error: tb is not active within run
define_task_block([&](auto& tb2) { // Define new task block

tb2.run(f); // OK: new task_block tb2 is active
...

});
});
...

});

– end example] [Note: Implementations are encouraged to diagnose the above error at translation time – end
note]

6.4.1 task_block member function template run [task_block.class.run]

template<typename F>
void run(F&& f);

Requires: F shall be MoveConstructible. DECAY_COPY (std::forward<F>(f))() shall be a valid expres-
sion.

Precondition: *this shall be the active task_block.

Effects: Evaluates DECAY_COPY (std::forward<F>(f))(), where DECAY_COPY (std::forward<F>(f))
is evaluated synchronously within the current thread. The call to the resulting copy of the function object is
permitted to run on an unspecified thread created by the implementation in an unordered fashion relative to
the sequence of operations following the call to run(f) (the continuation), or indeterminately sequenced
within the same thread as the continuation. The call to run synchronizes with the call to the function
object. The completion of the call to the function object synchronizes with the next invocation of wait on
the same task_block or completion of the nearest enclosing task block (i.e., the define_task_block or
define_task_block_restore_thread that created this task_block).

Throws: task_canceled_exception, as described in Exception Handling.

Remarks: The run function may return on a thread other than the one on which it was called; in such cases,
completion of the call to run synchronizes with the continuation. [Note: The return from run is ordered
similarly to an ordinary function call in a single thread. – end note]

Remarks: The invocation of the user-supplied function object f may be immediate or may be delayed until
compute resources are available. run might or might not return before the invocation of f completes.

6.4.2 task_block member function wait [task_block.class.wait]

void wait();
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Precondition: *this shall be the active task_block.

Effects: Blocks until the tasks spawned using this task_block have completed.

Throws: task_canceled_exception, as described in Exception Handling.

Postcondition: All tasks spawned by the nearest enclosing task block have completed.

Remarks: The wait function may return on a thread other than the one on which it was called; in such cases,
completion of the call to wait synchronizes with subsequent operations. [Note: The return from wait is
ordered similarly to an ordinary function call in a single thread. – end note]

[Example:

define_task_block([&](auto& tb) {
tb.run([&]{ process(a, w, x); }); // Process a[w] through a[x]
if (y < x) tb.wait(); // Wait if overlap between [w,x) and [y,z)
process(a, y, z); // Process a[y] through a[z]

});

– end example]

6.5 Function template define_task_block [task_block.define_task_block]

template<typename F>
void define_task_block(F&& f);

template<typename F>
void define_task_block_restore_thread(F&& f);

Requires: Given an lvalue tb of type task_block, the expression f(tb) shall be well-formed.

Effects: Constructs a task_block tb and calls f(tb).

Throws: exception_list, as specified in Exception Handling.

Postcondition: All tasks spawned from f have finished execution.

Remarks: The define_task_block function may return on a thread other than the one on which it was called
unless there are no task blocks active on entry to define_task_block (see Class task_block), in which
case the function returns on the original thread. When define_task_block returns on a different thread,
it synchronizes with operations following the call. [Note: The return from define_task_block is ordered
similarly to an ordinary function call in a single thread. – end note] The define_task_block_restore_thread
function always returns on the same thread as the one on which it was called.

Notes: It is expected (but not mandated) that f will (directly or indirectly) call tb.run(function-object).

6.6 Exception Handling [task_block.exceptions]

Every task block has an associated exception list. When the task block starts, its associated exception list is
empty.

When an exception is thrown from the user-provided function object passed to define_task_block or
define_task_block_restore_thread, it is added to the exception list for that task block. Similarly, when
an exception is thrown from the user-provided function object passed into task_block::run, the exception
object is added to the exception list associated with the nearest enclosing task block. In both cases, an
implementation may discard any pending tasks that have not yet been invoked. Tasks that are already in
progress are not interrupted except at a call to task_block::run or task_block::wait as described below.
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If the implementation is able to detect that an exception has been thrown by another task within
the same nearest enclosing task block, then task_block::run or task_block::wait may throw
task_canceled_exception; these instances of task_canceled_exception are not added to the exception
list of the corresponding task block.

When a task block finishes with a non-empty exception list, the exceptions are aggregated into an
exception_list object (defined below), which is then thrown from the task block.

The order of the exceptions in the exception_list object is unspecified.

EDITORIAL NOTE

The exception_list class is described in N4507 and is defined as follows:

class exception_list : public exception
{
public:

typedef _unspecified_ iterator;

size_t size() const noexcept;
iterator begin() const noexcept;
iterator end() const noexcept;

const char* what() const noexcept override;
};

7 Scheduling Strategies

A possible implementation of the task_block::run is to spawn individual tasks and immediately return
to the caller. These child tasks are then executed (or stolen) by a scheduler using a different (native)
thread, based on the availability of hardware resources and other factors. The original parent thread may
participate in the execution of the tasks when it reaches the join point (i.e. at the end of the execution of the
function object passed to the define_task_block or define_task_block_restore_thread). This approach
to scheduling is known as child stealing.

Other approaches to scheduling exist. In the approach pioneered by Cilk, the parent thread immediately
executes the spawned task at the spawn point. The execution of the rest of the function – i.e., the continuation
– is stolen by the scheduler if there are hardware resources available. Otherwise, the parent thread returns
from the spawned task and continues as if it had been a normal function call instead of a spawn. This
approach to scheduling is known as continuation stealing (or parent stealing).

Both approaches have advantages and disadvantages. It has been shown that the continuation stealing
approach provides better asymptotic space guarantees and prevents threads from stalling at a join point.
Child stealing is generally easier to implement without compiler involvement. N3872 provides a worthwhile
primer that addresses the differences between, and respective benefits of, these scheduling approaches.

It is the intent of this proposal to enable either scheduling approach and, in general, to be as open as possible
to additional scheduling approaches.

8 Design Decisions and Alternatives

The constructs proposed in this paper have a strong theoretical foundation from previous work on language-
based parallelism such as Cilk, X10, and Habanero. However, there are some practical issues that arise from
trying to harmonize these constructs with the existing C++ threading model. For example, the ability in X10
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and Habanero to return from a function without joining with sub-tasks is more difficult to achieve in C++
because the strict scoping of C++ function variables is less forgiving than the garbage collected variables in
the other two languages.

This section describes a couple of important issues that we considered along with some discussion of why we
chose the specific resolutions that we did.

8.1 Thread switching

8.1.1 Description of the issues

One of the properties of continuation stealing and greedy scheduling is that a define_task_block,
task_block::run or task_block::wait call might return on a different thread than that from which it was
invoked, assuming scheduler threads are mapped 1:1 to standard threads. This phenomenon, which is new to
C++, can be surprising to programmers and break programs that rely on the OS thread remaining the same
throughout the serial portions of the function (for example, in programs accessing GUI objects, mutexes,
thread-local storage and thread ID).

There are a number of possible approaches to mitigate the problems caused by thread switching. In considering
mitigation proposals, it was important to avoid overly-constraining future implementations in order to support
today’s limited view of threads. For example, this proposal does not require that parallelism be implemented
using OS threads at all – it could be implemented using specialized hardware such as GPUs or using other
facilities such as light-weight execution agents.

Additionally, the solution to problems caused by thread switching may be different for mutexes than for
thread-local storage (TLS) and thread ID. For example, a prototype mutex exists that works well with thread
switching and has nice theoretical properties that allow it to be used for both parallelism and for traditional
concurrency. The desired behavior for thread-local storage varies depending on its intended use, even in the
absence of thread switching. For example, the handle to a GUI object might need to be shared among all of
the tasks executing on behalf of a single original thread. Conversely, thread-local caches should not be shared
between concurrently-executing tasks. With or without thread switching, we will certainly need new TLS-like
facilities.

8.1.2 Design in this paper

In this proposal, the define_task_block_restore_thread function template provides a minimal but powerful
approach for addressing thread switching. Using this facility, a user can be sure that both thread-local
variables and mutexes are in a consistent state before and after the execution of a parallel computation. This
feature is expected to solve most of the issues that a user may run into in well-structured parallel code. Because
define_task_block_restore_thread requires stalling at a join point, it can potentially reduce parallel
speed-up. For this reason, our advice to users would be to use define_task_block except in circumstances
where thread identity is important. In implementations that do not support greedy scheduling, the behavior
of define_task_block_restore_thread would probably be identical to that of define_task_block.

The “outermost” call to define_task_block always returns on the thread from which it was called. This
special-case simplifies the job of adding parallelism to serial programs. A task block can be added to a function
within a program that was, until that point, entirely serial, without breaking the potential assumptions of
the caller.

8.1.3 Alternatives considered

We also discussed the possibility of language or library constructs to mark a function as potentially returning
on a different thread than that on which it was called. A straw-man proposal involved a thread_switching
keyword that would be applied as a suffix in the declarator for such functions:
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void f() thread_switching;

If function decorated with the thread_switching modifier were called from a function that did not have the
modifier, the compiler would inject code at the call site that would, on return from the decorated function,
stall the caller until the original thread became available to resume execution:

void f() thread_switching;

int main() {
auto thread_id_begin = std::this_thread::get_id();
f();
auto thread_id_end = std::this_thread::get_id();
assert(thread_id_end == thread_id_begin);
return 0;

}

Alternatively, calling a decorated function from an undecorated function could simply be ill-formed, requiring
the programmer to call define_task_block_restore_thread explicitly to avoid an error:

void f() thread_switching;

void g() {
f(); // ill-formed

}

void h() {
define_task_block_restore_thread([]{

f(); // OK
});

}

Other approaches were considered, including making a theoretical distinction between a “thread” as defined
in C++11 and a “worker” as the agent that executes tasks. Making this distinction would solve certain
problems with parallelism and thread identity, including issues of object and thread lifetimes that the
thread_switching keyword does not address. As we refine our notion of “execution agent”, it may become
attractive to adopt this terminology.

8.2 Returning with unjoined children

8.2.1 Description of the issue

The escaping asynchronous children feature of the constructs proposed in this paper allow a function to
return to the caller while some of its child tasks are still running. As in the case of thread switching, this
behavior can be surprising to programmers and break programs that rely on functions finishing their work
before they return. Although unstructured concurrency constructs such fire-and-forget threads already violate
these assumptions, we are attempting, in this paper, to define much more structured constructs that operate
at a finer granularity of work. Programmers writing structured parallel code need to be put on notice when a
function invoked in their program might spawn parallel tasks and return without joining them first. The
compiler may need to generate heap-allocated stack frames for such functions and the optimizer might be
impaired in doing its job if it needs to defensively assume that any function might return with child tasks
still running.
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8.2.2 Design in this paper

This proposal, unlike a previous revision, requires that a task_block be available in order to spawn a child
task. It can be argued that the presence of a task_block& argument to a function is sufficient notice for
both the compiler and the programmer to recognize that the called function might spawn children and return
with them still running. Indeed, there seems to be little reason to pass a task_block to a called function
except to allow exactly this usage.

8.2.3 Alternatives considered

We previously considered adding an unjoined_children decoration, similar to the thread_switching
keyword described above. This decoration would be automatically inherited by lambda functions, so that
common cases would not require the use of this keyword. This idea is explored in more detail in the original
Task Region paper N3832. With the advent of task_block, it seems that this approach is unnecessary and
is not discussed further in this revision.

8.3 Violating structured parallelism

8.3.1 Description of the issue

The task_block class was introduced (or re-introduced, as it was present in an early draft for task regions)
in order to avoid “out of band” communication between define_task_block and run, which a number
of committee members found to be troubling, especially during the experimentation phase when multiple
incompatible implementations might exist and silently collide with one another. The addition of task_block
solves a number of other problems, including that of returning with unjoined children (above). However,
task_block also exposes a name that can be abused to violate structured parallelism. For example:

define_task_block([&](auto& tb1) {
tb1.run(f);
define_task_block([&](auto& tb2) {

tb2.run(g);
tb1.run(h); // Using tb1 violates strict fork-join rules
tb2.run(j);

}
k();

}

Simply allowing such code makes all parallel programs harder to reason about, both for tools such as race
detectors and for human programmers. Additionally, support FOR scheduling children other than from the
inner-most task block might require more expensive data structures in the scheduler and/or more expensive
synchronization than the strict constructs. This proposal would make such usage undefined behavior, but it
is unfortunate that we cannot make it ill-formed because this is a library-only interface. Nevertheless, we
believe that most, if not all, such abuses can be caught by an implementation that integrates the parallelism
library with the compiler.

Another way in which task_block can be misused is by passing one to an asynchronous call. An example
of such misuse appears in the formal wording for task_block, above. Again, such abuses are generally
detectable by a sufficiently sophisticated compiler, but it is unfortunate that we cannot declare such misuse
“ill-formed.”
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8.3.2 Design in this paper

It is our opinion that actual errors caused by programmers violating structured parallelism will be rare,
especially when compared to the much larger set of hazards that are possible within a parallel or concurrent
program. Moreover, the risk can be mitigating by following simple coding rules, such as always giving your
task_block the same name, thus preventing two task_blocks from being in scope at the same time. Thus,
our approach to this potential problem can be summarized as “live with it.”

8.3.3 Alternatives considered

The original version of this proposal did not have a task_block object whose that could be abused to
violate structured parallelism. Instead, the runtime library would be require to track the dynamic nesting
of defined_task_block calls to deduce the correct task block for any call to run or wait. The benefits of
the task_block parameter, however, were considered to outweigh the small risk of structured parallelism
violations caused by its introduction.
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