
Better support for constexpr in std::array

Document #: P0107R0
Date: 2015-09-23
Project: Programming Language C++

Library Evolution Group
Reply-to: Louis Dionne

<ldionne.2@gmail.com>

1 Introduction

[N3598] removed the implicit marking of constexpr member functions as const. However, the
member functions of std::array were not revisited after this change, leading to a surprising lack
of support for constexpr in std::array’s interface. This paper fixes this omission by adding
constexpr to the member functions of std::array that can support it with a minimal amount of
work.

2 Motivation and Scope

With the advent of generalized constant expressions, it can be useful to create a std::array inside
a constexpr function, and then modify it. Without making some member functions constexpr,
this is impossible or overly difficult. For example, the following does not compile:

template <std:: size_t N, std:: size_t Size >

constexpr std::array <std::size_t , N * Size >

cycle_indices(std::array <std::size_t , Size > a)

{

std::array <std::size_t , N * Size > result {};

for (std:: size_t i = 0; i < N * Size; ++i) {

result[i] = i % Size;

}

return result;

}

Adding constexpr support for most of std::array’s member functions would be trivial and
would make such code compile. However, this paper does not propose systematically adding the
constexpr keyword to standard library types that could support it, and it does not even add
constexpr to all of std::array’s member functions. Even though the author thinks that it should
eventually be done, the scope of this proposal is purposefully kept minimal.

1

mailto:ldionne.2@gmail.com

3 Impact on the Standard

This proposal is a pure library extension. It does not require any new language features, and it
merely adds consistency to std::array’s interface.

4 Proposed Wording

Add to <array> synopsis of [N4296]:

template <class T, size_t N>

constexpr bool operator ==(const array <T,N>& x, const array <T,N>& y);

template <class T, size_t N>

constexpr bool operator !=(const array <T,N>& x, const array <T,N>& y);

template <class T, size_t N>

constexpr bool operator <(const array <T,N>& x, const array <T,N>& y);

template <class T, size_t N>

constexpr bool operator >(const array <T,N>& x, const array <T,N>& y);

template <class T, size_t N>

constexpr bool operator <=(const array <T,N>& x, const array <T,N>& y);

template <class T, size_t N>

constexpr bool operator >=(const array <T,N>& x, const array <T,N>& y);

Add to 23.3.2.1 class template array overview of [N4296]:

// iterators:

constexpr iterator begin () noexcept;

constexpr const_iterator begin () const noexcept;

constexpr iterator end() noexcept;

constexpr const_iterator end() const noexcept;

constexpr const_iterator cbegin () const noexcept;

constexpr const_iterator cend() const noexcept;

// element access:

constexpr reference operator [](size_type n);

constexpr reference at(size_type n);

constexpr reference front ();

constexpr reference back();

constexpr T* data() noexcept;

constexpr const T * data() const noexcept;

2

Add to 23.3.2.5 array::data of [N4296]:

constexpr T* data() noexcept;

constexpr const T* data() const noexcept;

5 Discussion

One might observe that some member and non-member functions were not made constexpr by
this paper.

• The rbegin, rend, crbegin, and crend member functions are not made constexpr. The
reason is that these functions return reverse iterators, which are not literal types. While
we could have decided to go for it and make reverse iterator a literal type, this is left
to another proposal in order to leave this proposal small and uncontroversial. While leaving
these functions non-constexpr leaves some inconsistency in std::array’s interface, this in-
consistency is precedented by the overloads of rbegin, rend, crbegin, and crend for builtin
array types, which are not constexpr for the same reason.

• The fill member function is not made constexpr by this paper. The reason is that fill

can be implemented in terms of memset for some types. Since memset is not constexpr,
requiring fill to be constexpr would force it to be implemented using an explicit loop all
the time. Such a pessimization is deemed unacceptable. Overcoming this limitation would
most likely require the ability to overload on constexpr, which is out of scope of this paper.

• The swap member function and the overload of the swap free function for std::array is not
made constexpr by this paper. The reason is that the swap function is not required to be
constexpr for other types, which means that std::array’s swap can’t be constexpr in the
general case. To keep this proposal self-contained and minimal, this inconsistency could be
tackled by a different paper adding general support for constexpr in std::swap. Another
possibility would be to amend this paper and make swap constexpr for std::array whenever
it can be, i.e. whenever the elements of the array are constexpr swappable.

6 Implementation Experience

This proposal was implemented and tested in libc++, and it seems to work just fine.

7 Acknowledgements

Thanks to Marshall Clow for providing comments, and to David Sankel for providing comments
and accepting to champion the paper in Kona.

3

8 References

[N3598] Richard Smith, constexpr member functions and implicit const
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3598.html

[N4296] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3598.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

	Introduction
	Motivation and Scope
	Impact on the Standard
	Proposed Wording
	Discussion
	Implementation Experience
	Acknowledgements
	References

