
A proposal to add sincos to the
standard library

P0081R0
Paul Dreik <paul dot dreik at dreik dot se>
2015-09-25

Introduction
Sometimes one needs to calculate sine and cosine for the same argument x. This is made with one
call to std::sin(x) and one to std::cos(x). This paper proposes adding a new function std::sincos(x),
calculating both at the same time.

Problem
In case the argument x is a complicated expression, it is easy to introduce errors at the time of
writing or during maintenance, erroneously calculating sine and cosine for different input.

Using a sincos function naturally expresses the intent of the programmer (”sin and cos should be
calculated for the same argument”).

Discussion
Gnu libc provides the following c sincos functions [gnu]:

void sincos(double x, double* sin, double* cos);
void sincosf(float x, float* sin, float* cos);
void sincosl(long double x, long double* sin, long double* cos);

Using pointer arguments for the results is c style and requires deciding if the pointers should be
allowed to alias and/or be null. It is proposed that return by value is used instead.

Newer x86 cpus seem to have support for calculating sin and cos simultaneously [wikipedia] which
can be more efficient[intel]. Having a sincos function may simplify exploiting hardware support
without having to rely on compiler optimization.

Solution
It is proposed that a std::sincos function is added to the standard library, with overloads on all
builtin floating point types.

Demonstration of intended usage:

#include <sincos>
#include <tuple>

double s, c;
void doit() {

std::tie(s, c) = std::sincos(1.047);
}

Proposed wording
26.X sincos

26.X.1 Header sincos synopsis

#include <utility>
namespace std {
 pair<double, double> sincos(double x) noexcept;
 // overloads on other floating point types, see below
}
In addition to the double version, there should be overloads on all other builtin floating point types.

26.X.2 sincos functions

Preconditions: none
Returns: the sine and cosine of the input
Remark: The sincos function shall behave as if it had the following definition:

std::pair<double, double> std::sincos(double x) {
return std::pair<double, double>(std::sin(x), std::cos(x));

}
// similarly for the overloaded versions

References
[gnu] Gnu libc manual: https://www.gnu.org/software/libc/manual/html_node/Trig-Functions.html

[intel] Intel® 64 and IA-32 Architectures Optimization Reference Manual, table C-20: https://www-
ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

[wikipedia] X86 instruction listings
https://en.wikipedia.org/wiki/X86_instruction_listings#Added_with_80387

https://www.gnu.org/software/libc/manual/html_node/Trig-Functions.html
https://en.wikipedia.org/wiki/X86_instruction_listings#Added_with_80387
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

	Introduction
	Problem
	Discussion
	Solution
	Proposed wording
	References

