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1 Introduction

This paper is an alternative proposal to [N4542], which proposes a design for a discriminated union.
This topic has been discussed extensively within the ISO C++ Standards Committee as well as
std-proposals mailing list. The goal of this paper is to identify the concerns of the polarizing
groups, and to propose a solution that would address them with minimal compromise.
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2 Motivation and Scope

Due to the lack of discriminated union with value semantics in C++, they are typically handled in
one of 3 ways:

• union-like class, with an enum as the discriminator

• Class inheritance hierarchy

• enum, in the special case where all alternatives are simply unit types.

2.1 union-like Class

A union-like class typically consists of the union which contains one of the possible alternatives,
and an enum that represents the discriminator.

1 struct Token {
2 Token(int i) : int_(i), type(Int) {}
3 Token(std::string s) : string_(std::move(s)), type(String) {}
4

5 ~Token() {
6 switch (type) {
7 case Int:
8 break;
9 case String:

10 using std::string;
11 string_.~string();
12 break;
13 }
14 }
15

16 enum { Int, String } type;
17 union {
18 int int_;
19 std::string string_;
20 };
21 };

Note that after all of this code, this class still only supports construction and destruction. Even
more code would need to be written to support other operations such as element access, assignment,
visitation, etc.

Furthermore, it still only handles exactly one set of types: int and std::string. A whole new
class definition would need to be written for a different set of types consisting of more or less the
exact same code.

2.2 Class Inheritance Hierarchy

A class inheritance is a discriminated union in the sense that a pointer to an abstract base class
can only be pointing to an instance of one of the derived classes.
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1 struct Token {};
2 struct Int : Token { int value; };
3 struct String : Token { std::string value; };

There are several disadvantages to this approach:

• Token no longer has value semantics. It must be passed around by pointer or reference in
order to avoid object slicing.

• Int, and String classes needed to be introduced since int and std::string cannot inherit
from Token.

• If a type needs to be a member of multiple discriminated unions, multiple inheritance needs
to be introduced.

• The use of virtual functions typically scatters the individual cases for a single algorithm into
different parts of the codebase which becomes an engineering burden. The visitor pattern
is a popular solution to this problem and also makes it possible for multi-visitation, but it
introduces non-trivial amount of boilerplate code only to support exactly one set of types.

2.3 enum

In the special case where the members of a discriminated union do not have associated data, an
enum is typically used to achieve the behavior.

1 enum class Color { Blue, Green, Red };

This paper proposes a library solution for a generic, type-safe discriminated union with value se-
mantics with the class template variant<Types...>.

The following is an example of how the library may be used:

1 #include <iostream>
2 #include <string>
3 #include <variant>
4

5 struct custom_equal {
6 template <class T>
7 bool operator()(const T& lhs, const T& rhs) const { return lhs == rhs; }
8

9 template <class T, class U>
10 bool operator()(const T&, const U&) const { return false; }
11 };
12

13 int main() {
14 using namespace std::string_literals;
15

16 // direct initialization
17 std::variant<int, std::string> v("hello world!"s);
18

19 // direct access
20 const std::string& s = std::get<std::string>(v);
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21 assert(s == "hello world!"s);
22

23 try {
24 int i = std::get<int>(v); // throws: std::bad_variant_access
25 } catch (const std::bad_variant_access& ex) {
26 // handle exception
27 }
28

29 // copy (and move) construction
30 std::variant<int, std::string> w(v);
31

32 // assignment
33 try {
34 v = 42;
35 } catch (const std::bad_variant_assign& ex) {
36 // v is in an indeterminate state.
37 // The exception thrown by the move constructor is available as ex.nested_ptr.
38 } catch (const std::exception& ex) {
39 // v is valid.
40 }
41

42 // visitation
43 std::type_switch (v) (
44 [](const auto& value) { std::cout << value; }
45 ); // prints: 42
46

47 std::type_switch (w) (
48 [](int value ) { std::cout << "int: " << value; },
49 [](const std::string& value) { std::cout << "string: " << value; }
50 ); // prints: string: hello world!
51

52 bool result = std::type_switch (v, w) (custom_equal{});
53 assert(!result);
54

55 std::type_switch (v, w) (
56 [](int , int ) { std::cout << "(int, int)" ; },
57 [](int , const std::string&) { std::cout << "(int, string)" ; },
58 [](const std::string&, int ) { std::cout << "(string, int)" ; },
59 [](const std::string&, const std::string&) { std::cout << "(string, string)"; }
60 ); // prints: (int, string)

The support for discriminated unions are common in many other languages such as Haskell, ML,
Rust, Swift, and F#.

3 Impact on the Standard

This proposal is a pure library extension, and does not require any new language features.
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4 Proposed Wording

Make the following changes to the experimental <optional> header:
namespace std {
- constexpr in_place_t in_place{};
+ in_place_t in_place() { return {}; }

- template <class... Args> constexpr explicit optional(in_place_t, Args&&...);
+ template <class... Args> constexpr explicit optional(in_place_t (&)(), Args&&...);

template <class U, class... Args>
- constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...);
+ constexpr explicit optional(in_place_t (&)(), initializer_list<U>, Args&&...);
}

Add a new subclause 20.N Variants under 20 General utilities library:

20.N Variants [variant]

20.N.1 In general [variant.general]

This subclause describes the variant library that provides a discriminated union as the class tem-
plate variant. Each template argument specifies the type of an element that can be stored in the
variant object.

Header <variant> synopsis:
namespace std {
// 20.N.2 class template variant:
template <class... Types> class variant;

// 20.N.3 class bad_variant_access:
class bad_variant_access;

// 20.N.4 class bad_variant_assign:
class bad_variant_assign;

// 20.N.5 in-place construction:
template <size_t I> in_place_t in_place(integral_constant<size_t, I>) { return {}; }
template <class T> in_place_t in_place(T) { return {}; }

// 20.N.6 nullvar:
struct nullvar_t {};
constexpr nullvar_t nullvar{};

// 20.N.7 element access:
template <size_t I, class... Types>
constexpr remove_reference_t<tuple_element_t<I, tuple<Types...>>>* get(

variant<Types...>*) noexcept;

template <size_t I, class... Types>
constexpr remove_reference_t<const tuple_element_t<I, tuple<Types...>>>* get(
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const variant<Types...>*) noexcept;

template <class T, class... Types> // only if see below
constexpr remove_reference_t<T>* get(variant<Types...>*) noexcept;

template <class T, class... Types> // only if see below
constexpr remove_reference_t<const T>* get(const variant<Types...>*) noexcept;

template <size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>& get(variant<Types...>&);

template <size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>& get(const variant<Types...>&);

template <size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>&& get(variant<Types...>&&);

template <size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>&& get(const variant<Types...>&&);

template <class T, class... Types>
constexpr T& get(variant<Types...>&); // only if see below

template <class T, class... Types>
constexpr const T& get(const variant<Types...>&); // only if see below

template <class T, class... Types>
constexpr T&& get(variant<Types...>&&); // only if see below

template <class T, class... Types>
constexpr const T&& get(const variant<Types...>&&); // only if see below

// 20.N.8 relational operators:
constexpr bool operator==(nullvar_t, nullvar_t) { return true; }
constexpr bool operator!=(nullvar_t, nullvar_t) { return false; }
constexpr bool operator< (nullvar_t, nullvar_t) { return false; }
constexpr bool operator> (nullvar_t, nullvar_t) { return false; }
constexpr bool operator<=(nullvar_t, nullvar_t) { return true; }
constexpr bool operator>=(nullvar_t, nullvar_t) { return true; }

template <class... Types>
constexpr bool operator==(const variant<Types...>&, const variant<Types...>&);

template <class... Types>
constexpr bool operator!=(const variant<Types...>&lhs,

const variant<Types...>&rhs) { return !(lhs == rhs); }

template <class... Types>
constexpr bool operator<(const variant<Types...>&, const variant<Types...>&);

template <class... Types>
constexpr bool operator>(const variant<Types...>&lhs,

const variant<Types...>&rhs) { return rhs < lhs; }

template <class... Types>
constexpr bool operator<=(const variant<Types...>&lhs,
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const variant<Types...>&rhs) { return !(lhs > rhs); }

template <class... Types>
constexpr bool operator>=(const variant<Types...>&lhs,

const variant<Types...>&rhs) { return !(lhs < rhs); }

// 20.N.9 specialized algorithms:
template <class... Types>
void swap(variant<Types...>& lhs,

variant<Types...>& rhs) noexcept(noexcept(lhs.swap(rhs)));

// 20.N.10 hash support:
template <> struct hash<nullvar_t>;
template <class... Types> struct hash<variant<Types...>>;

// 20.N.11 visitation:
template <class R = unspecified:deduce_tag, class... Variants>
unspecified:TypeSwitch<R, Variants...> type_switch(Variants&&...);

}

20.N.2 Class template variant [variant.variant]
namespace std {
template <class... Types>
class variant {
public:
// 20.N.2.1 variant construction:
constexpr variant() noexcept;

template <size_t I, class... Args>
explicit constexpr variant(in_place_t (&)(integral_constant<size_t, I>),

Args&&...);

template <size_t I, class U, class... Args> // only if see below
explicit constexpr variant(in_place_t (&)(integral_constant<size_t, I>),

initializer_list<U>,
Args&&...);

template <class T, class... Args>
explicit constexpr variant(in_place_t (&)(T), Args&&...);

template <class T, class U, class... Args> // only if see below
explicit constexpr variant(in_place_t (&)(T), initializer_list<U>, Args&&...);

template <class U> constexpr variant(U&&); // only if see below

variant(const variant&);
variant(variant&&) noexcept(see below);

// 20.N.2.2 variant destruction:
~variant();

// 20.N.2.3 variant assignment:
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template <size_t I, class... Args> void emplace(Args&&...);

template <size_t I, class U, class... Args>
void emplace(initializer_list<U>, Args&&...); // only if see below

template <class T, class... Args> void emplace(Args&&...);

template <class T, class U, class... Args>
void emplace(initializer_list<U>, Args&&...); // only if see below

template <class U> variant& operator=(U&&); // only if see below

variant& operator=(const variant&);
variant& operator=(variant&&) noexcept(see below);

// 20.N.2.4 variant observers:
constexpr int index() const noexcept;
constexpr const type_info& type() const noexcept;

// 20.N.2.5 variant swap:
void swap(variant&) noexcept(see below);

};
}

20.N.2.1 Construction [variant.cnstr]

For each variant constructor, an exception is thrown only if the construction of one of the types
in Types... throws an exception.

constexpr variant() noexcept;

Effects: Constructs the variant object in an indeterminate state.

template <size_t I, class... Args>

explicit constexpr variant(in_place_t (&)(integral_constant<size_t, I>),

Args&&... args);

Let T be the type tuple_element_t<I, tuple<Types...>>.

Requires: I < sizeof...(Types) && is_constructible_v<T, Args&&...> is true

Effects: Initializes the contained value of the variant as if constructing an object of type T

with forward<Args>(args)....

Postcondition: index() == I

Throws: Any exception thrown by the selected constructor of T.

Remarks: If the selected constructor of T is a constexpr constructor, this constructor shall be
a constexpr constructor.

template <size_t I, class U, class... Args> // only if see below

explicit constexpr variant(in_place_t (&ip)(integral_constant<size_t, I>),

initializer_list<U> init,
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Args&&... args);

Effects: Equivalent to

template <size_t I, class... Args>

explicit constexpr variant(

in_place_t (&)(integral_constant<size_t, I>), Args&&...);

with arguments ip, init, forward<Args>(args)...

Remarks: This constructor shall not participate in overload resolution unless
is_constructible_v< tuple_element_t<I, tuple<Types...>>,

initializer_list<U>&, Args&&...> is true. If the selected constructor of T is a constexpr

constructor, this constructor shall be a constexpr constructor.

template <class T, class... Args>

explicit constexpr variant(in_place_t (&)(T), Args&&... args);

Let I be the index of T in Types...

Requires: T is in Types... && T is unique within Types....

Effects: Equivalent to variant(in_place<I>, forward<Args>(args)...);

Remarks: If the selected constructor of T is a constexpr constructor, this constructor shall be
a constexpr constructor.

template <class T, class U, class... Args> // only if see below

explicit constexpr variant(in_place_t (&ip)(T),

initializer_list<U> init,

Args&&... args);

Effects: Equivalent to

template <class T, class... Args>

explicit constexpr variant(in_place_t (&)(T), Args&&...);

with arguments ip, init, forward<Args>(args)...

Remarks: This constructor shall not participate in overload resolution unless
is_constructible_v<T, initializer_list<U>&, Args&&...> is true. If the selected con-
structor of T is a constexpr constructor, this constructor shall be a constexpr constructor.

template <class U>

constexpr variant(U&& t); // only if see below

Let T be one of the types in Types... for which U&& is unambiguously convertible to by
standard overload resolution rules.

Effects: Equivalent to variant(in_place<T>, forward<U>(u));

Remarks: This constructor shall not participate in overload resolution unless there is a type
T in Types... for which U&& is unambiguously convertible to by standard overload resolution
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rules. If the selected constructor of T is a constexpr constructor, this constructor shall be a
constexpr constructor.

variant(const variant& that);

Let I be the constant expression of that.index().

Let T be tuple_element_t<I, tuple<Types...>>.

Requires: is_copy_constructible_v<U> is true for all U in Types...

Effects: Initializes the contained value of the variant as if constructing an object of type T

with get<I>(that).

Postcondition: index() == I

Throws: Any exception thrown by the selected constructor of T.

variant(variant&& that) noexcept(see below);

Let I be the constant expression of that.index()

Let T be tuple_element_t<I, tuple<Types...>>

Requires: is_move_constructible_v<U> is true for all U in Types...

Effects: Initializes the contained value of the variant as if constructing an object of type T

with get<I>(std::move(that)).

Postcondition: index() == I

Throws: Any exception thrown by the selected constructor of T.

Remarks: The expression inside noexcept is equivalent to the logical AND of
is_nothrow_move_constructible_v<U> for all U in Types...

20.N.2.2 Destruction [variant.dtor]

~variant();

Let I be the constant expression of index()

Let T be tuple_element_t<I, tuple<Types...>>

Effects: If the variant is initialized, calls get<I>(*this).˜T();
20.N.2.3 Assignment [variant.assign]

For each variant assignment operation, an exception is thrown only if the construction of one of
the types in Types... throws an exception.

template <size_t I, class... Args> void emplace(Args&&...);
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Let T be the type tuple_element_t<I, tuple<Types...>>.

Requires: is_constructible_v<T, Args&&...> is true

Effects: Destructs the value in *this, then initializes the contained value of *this as if con-
structing an object of type T with the arguments forward<Args>(args)...

Postcondition: index() == I

Throws: bad_variant_assign or any exception thrown by the selected constructor of T.

Exception Safety : If an exception E is thrown during the initialization of the value in *this, E is
caught and bad_variant_assign is thrown with E nested within it. In this case, no initialization
takes place and variant is left in an indeterminate state. Otherwise, there are no effects.

template <size_t I, class U, class... Args>

void emplace(initializer_list<U> init, Args&&... args); // only if see below

Effects: Equivalent to

template <size_t I, class... Args> void emplace(Args&&...);

with arguments init, forward<Args>(args)...

Remarks: Let T be the type tuple_element_t<I, tuple<Types...>>. This function shall
not participate in overload resolution unless is_constructible_v<T, initializer_list<U>&,

Args&&...> is true.

template <class T, class... Args> void emplace(Args&&...);

Let I be the index of T in Types...

Requires: T is in Types... && T is unique within Types....

Effects: Equivalent to emplace(in_place<I>, forward<Args>(args)...);

template <class T, class U, class... Args>

void emplace(initializer_list<U> init, Args&&...); // only if see below

Effects: Equivalent to

template <class T, class... Args> void emplace(Args&&...);

with arguments init, forward<Args>(args)...

Remarks: This constructor shall not participate in overload resolution unless
is_constructible_v<T, initializer_list<U>&, Args&&...> is true.

template <class U> variant& operator=(U&&); // only if see below

Let T be one of the types in Types... for which U&& is unambiguously convertible to by
standard overload resolution rules.

Requires: is_constructible_v<T, U&&> is true && is_assignable_v<T, U&&> is true

Effects: If *this contains a value of type T, effectively performs
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get<T>(*this) = forward<U>(u);

Otherwise, if is_nothrow_constructible_v<T, U&&> is true, performs

emplace<T>(forward<U>(u);

Otherwise, performs

emplace<T>(T(forward<U>(u)); // Note the temporary construction.

Returns: *this

Remarks: This constructor shall not participate in overload resolution unless there is a type
T in Types... for which U&& is unambiguously convertible to by standard overload resolution
rules.

variant& operator=(const variant& that);

Let I be the constant expression of that.index()

Let T be tuple_element_t<I, tuple<Types...>>

Requires: is_copy_constructible_v<U> is true && is_copy_assignable_v<U> for all U in
Types...

Effects: Equivalent to return *this = get<I>(that);

Returns: *this

variant& operator=(variant&& that) noexcept(see below);

Let I be the constant expression of that.index()

Let T be tuple_element_t<I, tuple<Types...>>

Requires: is_move_constructible_v<U> is true && is_move_assignable_v<U> for all U in
Types...

Effects: Equivalent to return *this = get<I>(std::move(that));

Returns: *this

Remarks: The expression inside noexcept is equivalent to the logical AND of
is_nothrow_move_constructible_v<U> && is_nothrow_move_assignable_v<U> for all U in
Types...

20.N.2.4 Observers [variant.observers]

constexpr int index() const noexcept;

Effects: Returns the index of the currently active alternative.

constexpr const type_info& type() const noexcept;
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Let I be the constant expression of index()

Let T be tuple_element_t<I, tuple<Types...>>

Effects: Returns typeid(T)

20.N.2.5 Swap [variant.swap]

void swap(variant& that) noexcept(see below);

Let I be the constant expression of index()

Let T be tuple_element_t<I, tuple<Types...>>

Requires: is_move_constructible_v<U> is true and U shall satisfy the requirements of
Swappable for all U in Types...

Effects: If index() == that.index(), performs

using std::swap;

swap(get<I>(*this), get<I>(that));

Otherwise, equivalent to calling

template <class T> void swap(T&, T&);

with arguments *this, that

Exception Safety : If an exception was thrown during the call to function swap(get<I>(*this),

get<I>(that)), the state of the value of *this and that is determined by the exception safety
guarantee of swap for T.

If an exception was thrown during the call to swap(*this, that), the state of the value of
*this and that is determined by the exception safety guarantee of variant’s move constructor
and assignment operator.

Remarks: The expression inside noexcept is equivalent to the logical AND of
is_nothrow_move_constructible_v<U> &&

noexcept(iter_swap(declval<U*>(), declval<U*>)) for all U in Types...

20.N.3 Class bad_variant_access [variant.bad.variant.access]

namespace std {

class bad_variant_access : public logic_error {

public:

explicit bad_variant_access(const string& what_arg);

explicit bad_variant_access(const char* what_arg);

};

}
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The class bad_variant_access defines the type of objects thrown as exceptions to report the
situation where an invalid attempt is made to access the value of a variant via get.

Given an object v of type variant<Types...>,

• For index-based operations, get<I>(v) is invalid if get<I>(&v) == nullptr

• For type-based operations, get<T>(v) is invalid if get<T>(&v) == nullptr

The value of what_arg is implementation defined.

explicit bad_variant_access(const string& what_arg);

Effects: Constructs an object of class bad_variant_access.

Postcondition: strcmp(what(), what_arg.c_str()) == 0.

explicit bad_variant_access(const char* what_arg);

Effects: Constructs an object of class bad_variant_access.

Postcondition: strcmp(what(), what_arg) == 0.

20.N.4 Class bad_variant_assign [variant.bad.variant.assign]

namespace std {

class bad_variant_assign : public exception, public nested_exception {

public:

bad_variant_assign() noexcept;

bad_variant_assign(const bad_variant_assign&) noexcept;

bad_variant_assign& operator=(const bad_variant_assign&) noexcept;

virtual const char* what() const noexcept;

void* variant_ptr() const noexcept;

};

}

The class bad_variant_assign defines the type of objects thrown as nested exceptions to report
the situation where an exception was thrown during an assignment (i.e. operator=, emplace)
into a variant object and is left in an indeterminate state.

bad_variant_assign() noexcept;

Effects: Constructs an object of class bad_variant_assign.

bad_variant_assign(const bad_variant_assign&) noexcept;

bad_variant_assign& operator=(const bad_variant_assign&) noexcept;

Effects: Copies an object of class bad_variant_assign.

virtual const char* what() const noexcept;
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Returns: An implementation-defined NTBS.

Remarks: The message may be a null-terminated multibyte string (17.5.2.1.4.2), suitable for
conversion and display as a wstring (21.3, 22.4.1.4).

void* variant_ptr() const noexcept;

Returns: The pointer to the variant that is left in an indeterminate state.

Remarks: If multiple variant objects are left in the indeterminate state during the propa-
gation of bad_variant_assign, the pointers to those variants will be captured within nested
bad_variant_assign exceptions.

20.N.5 In-Place Construction [variant.in.place]

in_place is an overloaded function used to disambiguate the overloads of constructors and
member functions of that take arguments (possibly a parameter pack) for in-place construction.

variant has constructors with

• decltype(in_place<I>) == in_place_t (&)(integral_constant<size_t, I>) as the first
parameter which indicates that an object of type tuple_element_t<I, variant<Types...>>

should be constructed in-place.

• decltype(in_place<T>) == in_place_t (&)(T) as the first parameter indicates that an
object of type T should be constructed in-place.

20.N.6 Nullvar [variant.nullvar]

struct nullvar_t {};

nullvar_t is an empty class type used as an alternative of a variant which allows the user
to opt-in for the presence of a conceptual representation of the empty state. [ Note: The class
template variant does not provide any special behavior for nullvar_t. The result of this is
that variant behaves consistently with any custom representation of the empty state. — end
note ]

constexpr nullvar_t nullvar{};

nullvar is a constant of type nullvar_t that is used as an alternative of a variant which
allows the user to opt-in for the presence of a conceptual representation of the empty state.

20.N.7 Element Access [variant.elem]

template <size_t I, class... Types>

constexpr remove_reference_t<tuple_element_t<I, tuple<Types...>>>* get(

variant<Types...>* v) noexcept;

Effects: Equivalent to

16



using T = tuple_element_t<I, tuple<Types...>>

return const_cast<remove_reference_t<T>*>(

get<I>(static_cast<const variant<Types...>*>(v)));

template <size_t I, class... Types>

constexpr remove_reference_t<const tuple_element_t<I, tuple<Types...>>>* get(

const variant<Types...>* v) noexcept;

Let J be the constant expression of v.index().

Requires: I < sizeof...(Types)

Returns: A pointer to the contained value of v if v != nullptr && I == J else nullptr

template <class T, class... Types>

constexpr remove_reference_t<T>* get(variant<Types...>* v) noexcept;

template <class T, class... Types>

constexpr remove_reference_t<const T>* get(const variant<Types...>* v) noexcept;

Let I be the index of T in Types....

Requires: T is in Types... && T is unique within Types....

Effects: Equivalent to return get<I>(v)

Returns: get<I>(v)

template <size_t I, class... Types>

constexpr tuple_element_t<I, tuple<Types...>>& get(variant<Types...>& v);

Effects: Equivalent to

using T = tuple_element_t<I, tuple<Types...>>;

return const_cast<T&>(

get<I>(static_cast<const variant<Types...>&>(v)));

template <size_t I, class... Types>

constexpr const tuple_element_t<I, tuple<Types...>>& get(

const variant<Types...>& v);

Effects: Equivalent to

auto *result = get<I>(&v);

return result ? *result : throw bad_variant_access(/* NTBS */);

template <size_t I, class... Types>

constexpr tuple_element_t<I, tuple<Types...>>&& get(variant<Types...>&& v);

Effects: Equivalent to
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using T = tuple_element_t<I, tuple<Types...>>;

return static_cast<T&&>(get<I>(v));

template <size_t I, class... Types>

constexpr const tuple_element_t<I, tuple<Types...>>&& get(

const variant<Types...>&& v);

Effects: Equivalent to

using T = tuple_element_t<I, tuple<Types...>>;

return static_cast<const T&&>(get<I>(v));

template <class T, class... Types>

constexpr T& get(variant<Types...>& v);

template <class T, class... Types>

constexpr const T& get(const variant<Types...>& v);

template <class T, class... Types>

constexpr T&& get(variant<Types...>&& v);

template <class T, class... Types>

constexpr const T&& get(const variant<Types...>&& v);

Let I be the index of T in Types....

Requires: T is in Types... && T is unique within Types...

Effects: Equivalent to return get<I>(v);

20.N.8 Relational Operators [variant.rel]

template <class... Types>

constexpr bool operator==(const variant<Types...>&lhs,

const variant<Types...>&rhs);

Requires: For all I where I ∈ [0, sizeof...(TypesI)], get<I>(lhs) == get<I>(rhs) is a
valid expression returning a type that is convertible to bool.

Returns: true if lhs.index() == rhs.index() && get<I>(lhs) == get<I>(rhs) where I is
the constant expression of lhs.index(), otherwise false.

template <class... Types>

constexpr bool operator<(const variant<Types...>&lhs,

const variant<Types...>&rhs);

Requires: For all I where I ∈ [ 0, sizeof...(TypesI)], get<I>(lhs) < get<I>(rhs) is a
valid expression returning a type that is convertible to bool.
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Returns: true if std::tie(lhs.index(), get<I>(lhs)) <

std::tie(rhs.index(), get<I>(rhs)) where I is the constant expression of lhs.index(),
otherwise false.

20.N.9 Specialized Algorithms [variant.special]

template <class... Types>

void swap(variant<Types...>& lhs,

variant<Types...>& rhs) noexcept(noexcept(lhs.swap(rhs)));

Effects: Equivalent to lhs.swap(rhs).

20.N.10 Hash Support [variant.hash]

template <> struct hash<nullvar_t>;

The template specialization shall meet the requirement of class template hash (20.9.13).

template <class... Types> struct hash<variant<Types...>>;

Requires: The template specialization hash<U> shall meet the requirements of class template
hash (20.9.13) for all U in Types...

The template specialization shall meet the requirement of class template hash (20.9.13).

20.N.11 Visitation [variant.visit]

template <class R = unspecified:deduce_tag, class... Variants>

unspecified:TypeSwitch<R, Variants&&...> type_switch(Variants&&... vs);

Effects: Constructs a callable object TypeSwitch which holds references to forward<Variants>(vs)....
Because the result may contain references to temporary variables, a program shall ensure that
the return value of this function does not outlive any of its arguments. (e.g., the program
should typically not store the result in a named variable).

template <class R, class... Variants>

struct TypeSwitch {

explicit TypeSwitch(Variants...);

template <class F>

see below TypeSwitch::operator()(F&&) const;

template <class... Fs>

see below TypeSwitch::operator()(Fs&&...) const;

template <template <class...> class F, class... Args>

see below TypeSwitch::operator()(const typed_visitor<F, Args...>&) const;

};
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explicit TypeSwitch(Variants... vs);

Effects: Holds references to vs....

template <class F>

see below TypeSwitch::operator()(F&& f) const;

Let vs... be the references to instances of Variants... that TypeSwitch holds.

Let VariantI be the Ith type in decay_t<Variants>>....

Let TypesI... be the template parameter pack Types... of VariantI.

Requires: invoke(forward<F>(f), get<I0>(v0), ..., get<IN>(vN)) OR forward<F>(f).template

operator()<I0, ..., IN>(get<I0>(v0), ..., get<IN>(vN)) must be a valid expression for
all II where II ∈ [ 0, sizeof...(TypesI)].

Effects: Let Is... be the constant expression of vs.index().... Equivalent to forward<F>(f).template
operator()<Is...>(get<Is>(vs)...) if it is a valid expression, otherwise equivalent to
invoke(forward<F>(f), get<Is>(vs)...);

Remarks: If !is_same_v<R, unspecified:deduce_tag> is true, the return type of this func-
tion is R.

Otherwise, if decay_t<F> contains a member typedef result_type, the return type is typename
decay_t<F>::result_type.

Otherwise, the return type is deduced by decltype(auto).

template <class... Fs>

see below TypeSwitch::operator()(Fs&&... fs) const;

Effects: Equivalent to (*this)(overload(forward<Fs>(fs)...)); // P0051

5 Terminology

This section clearly defines some of the terminology used within this paper. There were some
discrepancy around the understanding of terms such as discriminated union, sum type, empty
state, and null state. It will be worthwhile to be accurately define them for clear and efficient
communication.

5.1 Discriminated Union vs Sum Type

In set theory, a discriminated union (or disjoint union) of a family of sets S0, S1, ..., SN is a
modified union operation that augments the elements with the index of the originating set. Formally,
this is defined as: tSi = ∪{(x, i) : x ∈ Si}. For example, S0 = {1, 2, 3} and S1 = {1, 2}, S0 t S1 =
{(1, 0), (2, 0), (3, 0), (1, 1), (2, 1)}.
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In type theory, a sum type of a family of types T0, T1, ..., TN is a discriminated union of the types,
except that augmentation is typically done with a name, rather than an index. In functional
languages such as Haskell and OCaml, the name is represented as a type constructor. For example,
the declaration of a sum type Int + String is required to be tagged with a name like so: data

Identifier = Id Int | Name String, where Id is the tag of Int and Name is the tag of String.
The notation for sum type is typically T0 + T1 which derives from the sum relationship of the
cardinality of the types: |T0 + T1| = |T0|+ |T1|.

5.2 Empty State

A state in which the variant has none of its alternatives constructed.

5.3 Null State

A state in which the variant contains a value that represents the conceptual emptiness of a variant.
All operations are valid. For example, the user must explicitly handle the null case for the visitation
operation.

5.4 Valid, but Unspecified State

A state in which the variant has none of its alternatives constructed, but the discriminator of the
variant is in a specified state. The valid operations in this state are: assignment (e.g. operator=,
emplace), destruction, observation (e.g. index, valid), copy and move construction.

[ Example: If an object v of type std::variant<Types...> is in a valid, but unspecified state,
v.index() can be called unconditionally, but get<I>(v) can be called only if v.index() >= 0 is
true. — end example ]

5.5 Indeterminate State

A state in which the variant has none of its alternatives constructed, and the discriminator of the
variant is also in an unspecified state. The only valid operations in this state are: assignment (e.g.
operator=, emplace), and destruction. Any other operations performed in this state have undefined
behavior.

6 Design Decisions

6.1 Empty State

As defined in 5 Terminology, an empty state of a variant is a state where none of the alternatives
are constructed. The following is an example that illustrates the problem:
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1 std::variant<T, U> v(T(/* ... */));
2 U u;
3 v = u;

When v is assigned with u, it must destroy the contained value of type T and in-place construct a
value of type U. If an exception is thrown during the construction U, v would be in an empty state,
since it has already destroyed the initial value of type T.

The following subsections describe the various strategies considered to handle the exceptional case
which can arise when some alternatives have move constructors that can throw. Note that out of all
the design discussions of a standardized variant, this is the most contentious issue. Each approach
has at least one disadvantage which is claimed absolutely unacceptable to a group of people. The
goal of this paper is to choose a design that minimize the compromises, and also to leave enough
room for extensibility for those who absolutely do not agree. The strategy proposed in this paper
is mentioned last, highlighted in blue.

6.1.1 Additional Requirements on Alternatives

The general theme of this subsection is to enforce additional requirements on the alternatives. There
are various additional requirements which can be enforced to varying degrees.

For example, we could add additional requirements such as (1) all alternatives must be nothrow move
constructible, or (2) all alternatives must be nothrow default constructible and nothrow swappable.

If the additional requirements are not satisfied, we could (1) disallow variant as a whole, or (2)
delete the assignment operations.

Exception Safety: Strong

Pros: New types should have nothrow move constructors, and provides strong exception safety
guarantee.

Cons: Regardless of whether most new types should be nothrow move constructible or not, the
standard library is (and should continue to be) resilient to the existence of types with move
constructors that can throw. The standard library currently actively supports types with move
constructors that can throw (e.g. std::vector::push_back) by use of utility functions such as
std::move_if_noexcept.

Furthermore, the conditions in which a type can throw during its move construction is not as rare
as we would like. The following are conditions in which a move can throw:

• Types in the standard library with move constructors that can throw (e.g. std::set),

• Legacy types that do not have a move constructor would fall-back to copy construction which
can throw. This may be a type that the user can add a noexcept move constructor to, but it
may also be an external library type that the user has no control over.

• All const-qualified types. A type with noexcept move constructor (e.g. std::string) can
throw during a move construction if it is const-qualified (e.g. const std::string).
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6.1.2 Double Storage

The general theme of this subsection is to require double storage in situations where additional
requirements are not satisfied by the alternatives. It could be applied in varying degrees within
the spectrum of "minimize the cases in which double storage is introduced" to "always use double
storage".

Currently, the narrowest condition known to require double storage is if at least two alternatives
can throw during move construction.

Exception Safety: Strong

Pros: Under conditions in which double storage is required, people should accept their fate in
having to pay for the performance penalties.

Also, this is an issue that can be deferred as an implementation detail which will continue to improve
over time, and such implementation detail should not hinder the interface.

Cons: While the double storage strategy could be seen as an implementation detail that should not
affect the interface, I would argue that std::vector’s contiguous memory guarantee could also be
seen as an implementation detail that should not have affected the interface. Consider the exception
safety specification of std::vector::push_back:

If the T’s move constructor is not noexcept and T is not CopyInsertable into *this,
std::vector will use the throwing move constructor. If it throws, the strong exception
safety guarantee is waived and the effects are unspecified.

If std::vector was designed without the contiguous memory guarantee which could have been seen
as an "implementation detail", it would have ended up similar to std::deque where push_back

would always have strong exception safety guarantee.

The point is that giving up single storage in some cases for std::variant would be analogous to
giving up contiguous memory in some cases for std::vector.

6.1.3 Null State as a Required Alternative

As defined in 5 Terminology, a null state is a state in which variant contains a value that represents
the conceptual emptiness of a variant. This approach is to make the null state a required state of
a variant. This requirement could be enforced implicitly or explicitly:

• Implicit: nullvar_t is always implicitly injected as an alternative. That is, variant<int,
std::string> holds one of int, std::string, or nullvar_t

• Explicit: nullvar_t is required to always explicitly be provided as an alternative. That is,
variant<int, std::string> is not allowed. Must always provide nullvar_t.

This approach is analogous to a pointer, and therefore inherits all of the characteristics of a pointer.
The following are arguments for and against regarding the inherited characteristics.

Exception Safety: Basic
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Pros: This approach is simple, and analogous to a pointer which is a well understood primitive of
the language, and people know how to deal with them.

Cons: It requires the user of a variant to account for the null state everywhere. This is a major
disadvantage of a pointer that have been referred to by Tony Hoare as [The Billion Dollar Mistake].
References were introduced as a solution to provide non-null semantics for a pointer. While it is
possible to provide a separate class template which is analogous to a reference, it would be preferred
to introduce non-null semantics by default. Since opting in for the null state given non-null semantics
is trivial, while the converse is not.

6.1.4 Valid, but Unspecified State

A state in which the variant has none of its alternatives constructed, but the discriminator of the
variant is in a specified state. This state was introduced at WG21’s 2015 Lenexa meeting, and is
the approach taken by [N4542].

This state is visible via the bool-returning function valid(). The function is named valid()

because even though the variant is technically in a valid state, for all intents and purposes it is
invalid. It may be worth considering alternative names in order to avoid confusion (e.g. operator
bool, unspecified, usable, ready).

Exception Safety: Basic

Pros: It handles all types including ones that can throw during move construction, and it does not
incur any performance overhead. The null state is opt-in, so there is no null state by default.

Cons: Since this state is visible and partially well-defined, it’s perfectly valid for users to call the
valid() function anywhere in the code to test for the valid, but unspecified state. This is contrary
to its intended use, which is to check for the validity of the variant within a catch clause. The
following are somewhat contrived examples of intended and unintended use cases.

1 // intended usage:
2 void F(variant<T, U>& v, const variant<T, U>& w) {
3 try {
4 v = w;
5 } catch (const std::exception& ex) {
6 if (!v.valid()) {
7 // Failed during in-place construction, old value is unknown.
8 } else {
9 // Failed during temporary construction, old value is in ‘v‘.

10 }
11 }
12 }

1 // intended usage:
2 void G(variant<T, U>& v, const variant<T, U>& w) {
3 // Well, even if I was to catch the exception, I can’t do anything about it.
4 // So... just propagate it!
5 v = w;
6 }
7
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8 void H(variant<T, U>& v, const variant<T, U>& w) {
9 try {

10 G(v, w);
11 } catch (const std::exception& ex) {
12 if (!v.valid()) {
13 // Failed during in-place construction, old value is unknown.
14 } else {
15 // Failed during temporary construction, old value is in ‘v‘.
16 }
17 }
18 }

1 // unintended, valid usage:
2 void F(variant<T, U> v) {
3 assert(v.valid());
4 // Ok, use v.
5 }

1 // unintended, valid usage:
2 void F(const variant<T, U>& v) {
3 assert(v.valid());
4 // Ok, use v.
5 }

1 // unintended, valid usage:
2 void F(variant<T, U>& v) {
3 if (!v.valid()) {
4 // Make v valid.
5 v = T{};
6 }
7 // Ok, use v.
8 }

Ideally, we should eliminate the unintended usage of the valid() function.

6.1.5 Indeterminate State

A state in which the variant has none of its alternatives constructed, and the discriminator of the
variant is also in an unspecified state. The only valid operations in this state are: assignment (e.g.
operator=, emplace), and destruction. Any other operations performed in this state have undefined
behavior.

Exception Safety: None

Pros: It handles all types including ones that can throw during move construction, and it does not
incur any performance overhead. The null state is opt-in, so there is no null state by default.

Unlike the valid, but unspecified state, this state is unobservable, and any operations aside from
assignment and destruction trigger undefined behavior. With these properties, a function can and
is required to make stronger assumptions about the state of a variant.
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1 void F(variant<T, U> v) {
2 // v must be valid.
3 }

1 void F(const variant<T, U>& v) {
2 // Assume v is valid.
3 }

1 void F(variant<T, U>& v) {
2 // Either:
3 // - Assume v is valid, read and/or mutate the value, OR
4 // - Assume v is in an indeterminate state and assign a value to it.
5 }

Note that the above conditions are exactly what we would and be required to assume if we were to
replace variant<T, U> with int.

Cons: Since all other operations aside from assignment and destruction trigger undefined behavior,
this state is more dangerous than the valid, but unspecified state. This also means that under the
conditions in which an exception is thrown during variant assignment, we provide no exception
safety guarantees.

6.2 Default Construction

Many have claimed desirable for a variant to be default constructible for ease of use in containers
such as std::vector, std::map, and std::array. The requirements of a default constructor for
std::vector and std::map are not as strong, as there are alternative constructors and functions
available to better support types without a default constructor. For example, std::vector provides
std::vector::vector(size_t count, const T&) which can be used instead of std::vector::vector(size_t
count), and std::map provides std::map::insert which can be used instead of std::map::operator[].
While there are alternative approaches, it is indeed more difficult to use, as most users would prefer
m[key] = value; over m.insert(std::make_pair(key, value));

For std::array, there are no good alternatives. One would usually resort to using std::vector

instead which may be undesirable due to the incurred dynamic allocation and the loss of fixed size
guarantee.

This section discusses various default constructed states. The default constructed state proposed in
this paper is mentioned last, highlighted in blue.

6.2.1 First Type

This is the design that LEWG opted for at the WG21’s 2015 Lenexa meeting. This is the behavior
of a union when value initialized, and it makes sense for a variant if the assumption is that it
should be modeled after union.

Pros: This is what makes the most sense if we had to default construct one of the types, and this
state initializes to a fully valid state.
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Cons:

• variant remains non-default-constructible if the first type is non-default-constructible.

• The exception-safety guarantee depends on the first type.

• The runtime complexity guarantee depends on the first type.

• The behavior of default construction of variant changes based on the order of types.

Some have argued that the varying behavior of default construction across different instantiations
of variant should not be surprising since variant<T, U> and variant<U, T> are separate types
as far as the language is concerned. However, consider that vector<bool> and vector<int> are
also separate types as far as the language is concerned and the amount of pain that comes from the
inconsistent interfaces and behavior. Even though they are indeed separate types, there is still an
intuitive expectation that such a class template has consistent behavior across instantiations with
different types.

6.2.2 Valid, but Unspecified State

[N4542] mentions that LEWG has opted against default constructing into a valid, but unspecified
state in order to limit the paths of getting into such a state to the exceptional cases.

Pros: Under the assumption that default construction of variant is desirable, it would be desirable
for any variant to be default constructible. Default constructing into the valid, but unspecified
state is one option that allows any variant to be default constructible regardless of the types it
contains.

By default constructing into this state, the behavior of default construction stays consistent for any
variant, provides the noexcept guarantee, and constant runtime complexity guarantee.

Cons: As discussed in 5.4 Valid, but Unspecified State, recall that a valid, but unspecified state is
visible. As such, default constructing into this state would make it a common state that users can
and would be required to check for outside of the catch clause. That is, the following code becomes
perfectly valid:

1 void F(variant<T, U>& v) {
2 if (!v.valid()) {
3 // Make v valid.
4 v = T{};
5 }
6 // Ok, use v.
7 }
8

9 int main() {
10 variant<T, U> v;
11 F(v);
12 }

In order to avoid such code, the user would have to add the "v.valid() is true" precondition to
function F. Naturally, this precondition would exist for all operations of variant except assignment
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(e.g. operator=, emplace), destruction, observation (e.g. index, valid), and copy and move
construction. This design would only be slightly better than requiring the null state to always exist,
or deferring to using std::optional<variant<Types...>>.

6.2.3 Indeterminate State

Pros: Refer to 6.1.5 Indeterminate State and 6.2.2 Valid, but Unspecified State for previous dis-
cussions regarding the advantages of having this kind of state.

Unlike the valid, but unspecified state, the only valid operations of this state are assignment (e.g.
operator=, emplace), and destruction. As mentioned in 6.1.5 Indeterminate State, this means that
functions can make stronger assumptions about the state of a variant object.

Note that this behavior is similar how int behaves:

1 int x; // uninitialized
2 x = 42; // assign

1 std::variant<int, std::string> v; // indeterminate
2 v = 42; // assign

The argument is that validity checks of a variant are no longer necessary nor possible, the same
way validity checks of an int are not necessary nor possible. It is required that a variant object in
an indeterminate state be assigned a value before use, the same way it is required that uninitialized
int be assigned a value before use, in order to avoid undefined behavior.

This is true for enum as well, which is an existing discriminated union with value semantics.

1 enum class Color { Blue, Green, Red };
2 Color color; // uninitialized
3 color = Color::Blue; // assigned

Another argument is one of efficiency. Given a size N, the following are different ways to initialize
a std::array<int, N>, and std::vector<int> of size N:

1 std::array<int, N> v; // uninitialized
2

3 std::array<int, N> v = {}; // initialized to 0

1 // avoid initialization of N integers
2 std::vector<int> v;
3 v.reserve(N);
4

5 // initialized to 0
6 std::vector<int> v(N);

It’s common practice to avoid the cost of initialization for performance gains. The argument here
is that if there are performance gains from not initializing int to 0, there must also be performance
gains from not default constructing the first type of variant.

This design has the following properties:
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• Any variant<Types...> is default constructible.

• Consistent behavior of default construction for all variant<Types...>.

• noexcept exception-safety guarantee.

• Constant runtime complexity guarantee.

Cons: While the behavior of this state is similar to int, it’s not equivalent due to the fact that
classes cannot differentiate between default initialization and value initialization.

1 int x; // uninitialized
2 int y{}; // initialized to 0

1 std::variant<int, std::string> v; // indeterminate
2 std::variant<int, std::string> w{}; // indeterminate

It should however be noted that this caveat already exist for atomic types in the <atomic> library.

1 std::atomic<int> x; // uninitialized
2 std::atomic<int> y{}; // uninitialized

Lastly, it goes against one of the guidelines given in the [C++ Core Guidelines]: ES.20: Always
initialize an object which recommends to avoid uninitialized state.

6.3 Null State

This section discusses the approaches in which the null state could be handled for variant. The
strategy proposed in this paper is mentioned first, highlighted in blue.

6.3.1 std::nullvar_t

This approach is to simply introduce an empty class type std::nullvar_t analogous to std::nullopt_t.
Users would opt-in for a null state by specifying std::nullvar_t as one of the alternatives.

Furthermore, variant does not provide special behavior for std::nullvar_t. The main motivation
is to keep consistent behavior of variant<Types...>. As mentioned in 6.2.1 First Type, there is an
expectation that a class template has consistent behavior across instantiations with different types.
This follows that design principle of not introducing special behavior due to involvement of a type
that we consider special. This, in turn, facilitates generic programming.

• The types that need to be handled for visitation all appear in the type list of a variant.

• Consistent relationship between

– (std::nullvar_t, std::variant)

– (std::nullopt_t, std::optional)

– (std::nullptr_t, T*)
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• Since there is no special behavior provided for std::nullvar_t, users are free to provide a
custom type that represents the null state within their project. (e.g. empty_t in Adobe ASL,
none_t in Boost, None in Facebook Folly, Nothing in Apache Mesos)

Consider the symmetry in the handlers of a generalized type_switch where types such as pointers
and std::optional are supported:

1 std::optional<std::size_t> x;
2 std::variant<int, std::string, std::nullvar_t> y;
3 int *z;
4 /* ... */
5 std::type_switch (x, y, z) (
6 [](std::size_t , int , int ) { /* ... */ },
7 [](std::size_t , int , std::nullptr_t) { /* ... */ },
8 [](std::size_t , const std::string& , int ) { /* ... */ },
9 [](std::size_t , const std::string& , std::nullptr_t) { /* ... */ },

10 [](std::size_t , std::nullvar_t , int ) { /* ... */ },
11 [](std::size_t , std::nullvar_t , std::nullptr_t) { /* ... */ },
12 [](std::nullopt_t, int , int ) { /* ... */ },
13 [](std::nullopt_t, int , std::nullptr_t) { /* ... */ },
14 [](std::nullopt_t, const std::string& , int ) { /* ... */ },
15 [](std::nullopt_t, const std::string& , std::nullptr_t) { /* ... */ },
16 [](std::nullopt_t, std::nullvar_t , int ) { /* ... */ },
17 [](std::nullopt_t, std::nullvar_t , std::nullptr_t) { /* ... */ }
18 );

6.3.2 std::optional<std::variant<Types...>>

This is an intuitive approach since std::optional exists to provide the notion of a null state.
Wrapping the variant inside of an optional would augment the null state to a list of types
Types... as desired. However, this introduces an extra level of indirection that needs to be
observed and dereferenced. This matters because generally flat control flow is more readable and
easier to reason about compared to nested control flow. Consider the following control flow with
std::optional<std::variant<int, std::string>>:

1 std::optional<std::variant<int, std::string>> x, y;
2 /* ... */
3 if (x && y) {
4 std::type_switch (*x, *y) (
5 [](int, int) { /* handle int, int. */ },
6 [](int, const std::string&) { /* handle int, string. */ },
7 [](const std::string&, int) { /* handle string, int. */ },
8 [](const std::string&, const std::string&) { /* handle string, string. */ }
9 );

10 } else if (x) {
11 std::type_switch (x) (
12 [](int) { /* handle int, null. */ },
13 [](const std::string&) { /* handle string, null. */ },
14 );
15 } else if (y) {
16 std::type_switch (y) (
17 [](int) { /* handle null, int. */ },
18 [](const std::string&) { /* handle null, string. */ },
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19 );
20 } else {
21 /* handle null, null */
22 }

Compared to the control flow with std::variant<int, std::string, std::nullvar_t>:

1 std::variant<int, std::string, std::nullvar_t> x, y;
2 /* ... */
3 std::type_switch (x, y) (
4 // no need for comments, the signature tells you exactly what types are being handled.
5 [](int , int ) { /* ... */ },
6 [](int , const std::string&) { /* ... */ },
7 [](int , std::nullvar_t ) { /* ... */ },
8 [](const std::string&, int ) { /* ... */ },
9 [](const std::string&, const std::string&) { /* ... */ },

10 [](const std::string&, std::nullvar_t ) { /* ... */ },
11 [](std::nullvar_t , int ) { /* ... */ },
12 [](std::nullvar_t , const std::string&) { /* ... */ },
13 [](std::nullvar_t , std::nullvar_t ) { /* ... */ }
14 );

We can see that std::variant<int, std::string, std::nullvar_t> enables a flatter control flow
compared to std::optional<std::variant<int, std::string>>.

6.3.3 Separate Class Template: std::nullable_variant

The idea is to introduce a separate class template to represent a nullable variant, similar to the way
pointer and reference are distinct type modifiers. However, given that a variant is a discriminated
union, it seems more natural that this case be generically handled where a null state is simply one
of the states of the discriminated union.

The main advantage of introducing this class template would be that an empty state of any kind
(e.g. valid, but unspecified, indeterminate) need not exist.

There are at least 2 possible interfaces:

1. Essentially an alias for std::optional<std::variant<Types...>>

2. Modified behavior based on std::variant<std::nullvar_t, Types...>

The disadvantages of (1) are discussed in 6.3.2 std::optional<std::variant<Types...>>.

For (2) the main disadvantages are:

• std::nullvar_t becomes special which disallows the use of a custom null type.

• Either std::nullvar_t is disallowed for variant, or users need to be aware of the subtle
differences between variant<std::nullvar_t, Types...> vs nullable_variant<Types...>.

• In generic programming, it would be required to handle variant and nullable_variant

separately even in cases where it can be handled generically.
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6.4 Discriminator

This section discusses the possible discriminator to refer to an alternative of a variant. The strategy
proposed in this paper is mentioned last, highlighted in blue.

6.4.1 Name

When identifiers are used to distinguish the members of a discriminated union, it is a sum type. This
approach is used by union for example, where each member of a union has an associated identifier.
Given union { T t; U u; };, x and y are distinct because the identifier is the discriminator. Since
there are no identifiers involved in variant<T, U>, in order to support this feature, variant would
need to be introduced at the language-level rather than at the library-level.

6.4.2 Type

This approach uses the type of the alternatives as the discriminator of a discriminated union.

Pros: Since arbitrary new types can be created with unique names, this enforces that every alter-
native be uniquely identified by a type which maintains the reference relationship even in the event of
reordering. For example, given variant<Circle, Square, Triangle> shape; get<Circle>(shape);

retrieves Circle even if we change the declaration of the shape variable to variant<Square,

Triangle, Circle> shape;

Furthermore, the inability to represent multiple occurrences of a single type T as distinct states can
be addressed by introducing wrapper classes X and Y where each of them wrap an instance of T.
This is useful also because it introduces a name that is distinctive at the type-level (unlike type
alias declarations).

Lastly, The variant interface becomes simpler since there is no need to support index-based oper-
ations such as variant(in_place<0>, 42) and get<0>(v).

Cons: The notion of a named discriminator and the corresponding type are conflated into a single
type. It also leads to the question: should multiple occurrences of a single type T in Types... (e.g.
variant<T, T>) be disallowed, or allowed, but do not represent distinct states?

Neither of these definitions are accurate in terms of a discriminated union from set theory nor sum
type from type theory. Therefore, this approach is more suitable to be considered a workaround
technique to emulate a sum type, rather than being part of library design.

6.4.3 Index

This approach uses the index of an alternative as the discriminator. This behavior of implicitly
assigned indices is consistent with std::tuple, where the elements of std::tuple can be referred
to with its their indices, or by their type if the type is unique within Types....
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Pros: This definition is accurate to the definition of discriminated union, and the interface is
consistent with std::tuple. The workaround technique of introducing new types and using the
type-based operations are still applicable.

Cons: While using the indices may seem essentially equivalent to using associated names, a signif-
icant difference is that the order of types become sensitive in the index-based operations. Suppose
the type of v in the expression get<0>(v); is variant<T, U>. If the type is later changed to
variant<U, T>, or variant<V, T, U>, a different member is retrieved.

This is contrary to using the name as the discriminator. Consider union as the example of name
being used as the discriminator (except union does not keep track of the discriminator itself).
Regardless of whether the type of u in the expression u.x is union { X x; Y y; }; or union { Y

y; X x; };, the member of type X is retrieved.

This is an inherent difference in the meaning of the expressions get<0>(v) and u.x, the former says
"get me whatever is the first alternative" whereas the latter says "get me the alternative that is
tagged with x".

6.5 Visitation: Interface

This section describes a possible visitation mechanism and does not preclude other mechanisms.
For example, [P0050] is a draft of a pattern matching proposal at the library-level, while [Mach7] is
an experimental library solution to [N3449] which aims to bring pattern matching at the language-
level. The mechanism being proposed here is a type switch which is much simpler than generalized
pattern matching, and only specifies the aspects involving variant.

6.5.1 visit(F, Variants...);

[N3915] proposed apply which takes a function object F and a tuple Tuple, and dispatches F with
the elements of Tuple. This function is similar, but for variant. That is, visit takes a function
object F and Variants..., and dispatches F with the content of each the Variants....

Although the similarity to apply seem desirable for consistency, I believe there are major drawbacks
at the callsite. The inherent difference between apply and visit is that apply only requires a single
handler that handles the elements of the tuple, whereas visit (almost always) requires many
handlers that handle the cartesian product of the alternatives of the variant objects.

Consider a few sample usages of visiting a variant<int, std::string> The following are 3 of the
possible ways to provide the handlers via the visit interface.

• Function object which requires out-of-line definition.

• Generic lambda to provide a single generic handler inline.

• overload to provide specific handlers inline. // P0051

1 int main() {
2 std::variant<int, std::string> v(42);
3

4 // Function object which requires out-of-line definition.
5 struct Print {
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6 void operator()(int value) const { std::cout << "int: " << value; }
7 void operator()(const std::string& value) const { std::cout << "string: " << value; }
8 };
9 std::visit(Print{}, v);

10

11 // Generic lambda to provide a generic handler inline.
12 std::visit([](const auto& value) { std::cout << value; }, v);
13

14 // ‘overload‘ to provide specific handlers inline. // P0051
15 std::visit(
16 overload([](int value) { std::cout << "int: " << value; }
17 [](const std::string& value) { std::cout << "string: " << value; }),
18 v);
19 }

6.5.2 type_switch(Variants...)(Fs...);

The type switch mechanism here is similar to visit, but there are a couple of differences.

• The variant objects come before the handlers.

• overload is no longer necessary.

1 int main() {
2 std::variant<int, std::string> v(42);
3

4 // Function objects can still be defined out-of-line.
5 struct Print {
6 void operator()(int value) const { std::cout << "int: " << value; }
7 void operator()(const std::string& value) const { std::cout << "string: " << value; }
8 };
9 std::type_switch (v) ( Print{} );

10

11 // Generic lambda to provide a generic handler inline.
12 std::type_switch (v) ( [](const auto& value) { std::cout << value; } );
13

14 // No need for ‘overload‘.
15 std::type_switch (v) (
16 [](int value) { std::cout << "int: " << value; },
17 [](const std::string& value) { std::cout << "string: " << value; }
18 );
19 }

This approach is favored over the visit function considering the inherent difference that variant
visitation require multiple handlers in overwhelming number of cases. It is also more reminiscent
of existing language constructs such as the switch statement in C++ and various forms of match
statements in functional languages such as OCaml. The name type_switch was chosen over match
to

• leave match available for language-level pattern matching

• avoid potential confusion with the match-related names in the <regex> library.
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6.6 Visitation: Return Type

This section explores various options regarding the return type of visitation. Should the return type
be deduced to something sensible? or should it be required that all of the handlers return the same
type?

Consider the following example:

1 std::variant<int, std::string> v(42);
2 auto result = std::type_switch (v) (
3 [](int value) /* -> int */ { return value; },
4 [](const std::string& value) /* -> std::size_t */ { return value.size(); }
5 );
6 // What is the result of decltype(result)? Does this even compile?

6.6.1 std::common_type_t<return_types...>

The approach here is to deduce the final return type as the common type of return types of each
of the handlers. While this approach may seem reasonable, it is quite dangerous as we can very
easily have loss of data and/or precision. For example, the deduced return type of the example
above would be std::size_t which is likely to be a silent error if the int handler returns a negative
value.

6.6.2 std::variant<return_types...>

In order to prevent data loss and type information, we could try to deduce the return type to be
std::variant<return_types...>. In the case of the above example, the return type would be
std::variant<int, std::size_t>.

The immediately obvious disadvantage of this approach is that even if all return types are T, the
final return type is variant<T> if duplicates removed, or variant<T, T, ..., T> otherwise, rather
than T. While this can be mitigated by adding it as a special rule, it immediately starts to add
complexity to the return type deduction rule for a variant.

Another case to keep in mind is the presence of void-returning functions. Consider a function object
where the return types of operator() are: int, std::string, void. Since void does not add
additional state to a variant, naively deducing the return type to be variant<int, std::string,

void> is not sufficient. The actual deduced return type needs to be variant<int, std::string,

std::nullvar_t>.

Other situations that may or may not require special rules:

• Two handlers with return types: const X& and const Y&. Should the deduced return type be
variant<const X&, const Y&>, or const variant<X, Y>&?

• Two handlers with return types: const D1* and const D2*, and D1 and D2 both inherit from
B. Should the return type be variant<const D1*, const D2*>, or should the covariant return
type rule kick in and therefore result in const B*?
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Return type deduction rules in C++ are already quite complex at the language-level today. Intro-
ducing this level of complexity at the library-level would be very much undesirable.

6.6.3 Same Type

Having considered the disadvantages of the two approaches above, this paper proposes that the
return types of all of the handlers must have the same return type. This rule enforces the programmer
to be explicit, does not suffer from loss of data/type, and is simple to remember.

In order to mitigate the need to repeatedly specify the final return type in each handler, an explicit
return type can be specified as a template argument to type_switch.

1 std::variant<int, std::string> v(42);
2 auto result = std::type_switch<variant<int, std::size_t>>(v) (
3 [](int value) { return value; },
4 [](const std::string& value) { return value.size(); }
5 );
6 // decltype(result) == variant<int, std::size_t>

6.7 Visitation: Dispatch

This section describes how dispatching works for visitation of variant objects. The visitation
mechanism proposed here requires exhaustive match, but again, it does not preclude other proposals
to override or augment this proposal.

The handler can have a superset of all possible cases, the only requirement is that it covers all
potential cases of the match. For example, consider the following code:

1 class Circle;
2 class Square;
3 class Rectangle;
4 class Rhombus;
5 class RightTriangle;
6 class EquilateralTriangle;
7

8 using Shape = variant<Circle, Square, Rectangle, Rhombus, RightTriangle, AcuteTriangle>;
9 using Quadrilateral = variant<Square, Rectangle, Rhombus>;

10 using Triangle = variant<RightTriangle, AcuteTriangle>;
11

12 // ‘get_area‘ can handle all of ‘Shape‘, ‘Quadrilateral‘, and ‘Triangle‘.
13 template <class... Types>
14 double get_area(const std::variant<Types...>& shape) {
15 return type_switch (shape) (
16 [](const Circle& that) { /* ... */ },
17 [](const Square& that) { /* ... */ },
18 [](const Rectangle& that) { /* ... */ },
19 [](const Rhombus& that) { /* ... */ },
20 [](const RightTriangle& that) { /* ... */ },
21 [](const EquilateralTriangle& that) { /* ... */ }
22 );
23 }
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6.7.1 Unique Alternatives

When the alternatives consist of unique types, we simply provide handlers for each alternative.

6.7.2 Duplicate Alternatives

When there are duplicate alternative types, it gets a bit more complicated.

The following code is allowed:

1 variant<int, int, std::string> v;
2 /* ... */
3 type_switch (v) (
4 [](int) { /* handles both int alternatives. */ },
5 [](const std::string&) { /* handles string. */ }
6 );

This may seem crazy at first, but consider a common use case of the default handler that matches
anything with auto&&, as well as the use of constrained function templates with SFINAE or Concepts
to match a family of types.

1 variant<int, std::size_t, double, std::string> v;
2

3 /* ... */
4

5 // Matching multiple types with a single default handler:
6 type_switch (v) (
7 [](int) { /* handle int. */
8 [](auto&&) { /* handles int, std::size_t and string. */ },
9 );

10

11 // Matching subset of types with constrained function templates.
12 struct handler {
13 template <typename T>
14 std::enable_if<std::is_integral_v<T>> operator()(T) const {
15 /* handles int, and std::size_t */
16 }
17

18 void operator()(double) const { /* handle double */ }
19 void operator()(const std::string&) const { /* handle string */ }
20 };
21

22 type_switch (v) ( handler{} );

The expectation is that a handler is expected to generically handle whatever type it matches, and
this is consistent even in the presence of duplicate types.

In the rare cases where it is useful to know the original type in which the value came from, an
index-aware handler can be provided to retrieve the indices of the originating types. This situation
can arise from duplicate types, but also from the consequence of allowing references.

1 int x = 42;
2 variant<int, int &> v(in_place<1>, x);
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3 type_switch (v) ( [](int &) { /* matches both int, and int& */ );
4

5 // index-aware handler
6 struct index_aware {
7 template <size_t I>
8 void operator()(int &) const {
9 /* still matches both int, and int&, but ‘I‘ tells you which one. */

10 }
11 };
12

13 type_switch (v) ( index_aware{} );

Since non-deduced template parameters cannot be specified in a lambda, the implication here is
that an index aware handler must be defined as an out-of-line function object. However, considering
that this is likely a rare use case, it is unlikely to be a big deal.

6.8 Miscellaneous

6.8.1 constexpr

This proposal stays consistent with std::optional in terms of its constexpr-ness. More sophis-
ticated conditions such as std::is_trivially_copy_constructible_v to increase the constexpr-
ness is not considered in this proposal.

6.8.2 void

void is allowed, and adds no state. This result follows from the fact that the proposed variant

design accurately models the formal definition of a discriminated union. Since the void type has an
empty set of values (i.e. 0 states), it has a + 0 effect on the number of states of a variant object.

While this is a theoretical argument, the practical argument is that it is not possible to use void

as a match type for multi-visitation. Consider a single visitation scenario where void is used to
indicate the null state.

1 variant<int, void> v;
2 /* ... */
3 type_switch (v) (
4 [](int ) { /* ... */ },
5 [](void) { /* ... */ } // == []() { /* ... */ }
6 );

Now imagine generalizing that to multi-visitation:

1 variant<int, void> v, w;
2 /* ... */
3 type_switch (v, w) (
4 [](int , int) { /* ... */ },
5 [](int , void) { /* ... */ }, // invalid
6 [](void, int) { /* ... */ }, // invalid
7 [](void, void) { /* ... */ } // invalid
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8 );

Therefore even for practical reasons, there is clear benefit to introducing a std::nullvar_t.

6.8.3 References

References are allowed as an alternative.

7 Extensibility

This section exists to demonstrate how this variant design can be extended to support various
features desired by polarizing groups. It is intentionally separated out from 6 Design Decisions,
since extensibility in itself was not a driving factor in the proposed design. However, it is evident
that starting from the proposed design, those who want different semantics can extend it to get the
semantics they want, whereas trying to arrive at this design based on other alternatives would be
much more difficult.

7.1 Default Construct the First Type

Given a variant that default constructs to the first type, it would be very difficult to extend that
variant and keep it uninitialized. However, the converse is trivial.

1 template <class Head, class... Tail>
2 class Variant : public std::variant<Head, Tail...> {
3 public:
4

5 Variant() : std::variant<Head, Tail...>(Head{}) {}
6 };

7.2 Turn off Assignment

Given a variant that has assignment turned off, users who want assignment would need to imple-
ment their own. However, the converse scenario of turning off given functionality is very easy.

1 template <class... Types>
2 class NonAssignableVariant : public std::variant<Types...> {
3 public:
4

5 template <std::size_t I, class... Args> void emplace(Args&&...) = delete;
6

7 template <std::size_t I, class U, class... Args>
8 void emplace(std::initializer_list<U>, Args&&...) = delete;
9

10 template <class T, class... Args> void emplace(Args&&...) = delete;
11

12 template <class T, class U, class... Args>
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13 void emplace(std::initializer_list<U>, Args&&...) = delete;
14

15 template <class U> variant& operator=(U&&) = delete;
16

17 variant& operator=(const variant&) = delete;
18 variant& operator=(variant&&) = delete;
19 };

7.3 Turn off Assignment under Certain Conditions

Given a variant where assignment is turned off in some cases, users who want assignment even
in those cases would need to override the behavior with their own implementation of assignment.
Leveraging 7.2 Turn off Assignment, the converse scenario remains very simple.

1 template <class... Types>
2 class Variant
3 : public std::conditional_t<
4 (std::is_nothrow_move_constructible_v<Types> && ...),
5 std::variant<Types...>,
6 NonAssignableVariant<Types...>> {};

7.4 Nullable Variant

Given a variant that always carries a null state and default constructs into it as well as recovering to
that state when an exception occurs during the move construction of assignment, it would be difficult
to make a non-nullable variant out of it without adding runtime checks. Admittedly, augmenting the
null state to a non-null variant and providing augmented behavior was not as trivial as I thought
it would be, but it’s still doable.

1 template <class... Types>
2 class Variant : public std::variant<std::nullvar_t, Types...> {
3 public:
4

5 using super = std::variant<std::nullvar_t, Types...>;
6

7 Variant() : super(std::nullvar) {}
8

9 template <std::size_t I, class... Args>
10 void emplace(Args&&... args) {
11 try_([&] { super::template emplace<I>(std::forward<Args>(args)...); });
12 }
13

14 template <size_t I, class U, class... Args>
15 auto emplace(std::initializer_list<U> init, Args&&... args)
16 -> decltype(super::template emplace<I>(init, std::forward<Args>(args)...)) {
17 try_([&] { super::template emplace<I>(init, std::forward<Args>(args)...); });
18 }
19

20 template <class T, class... Args>
21 void emplace(Args&&... args) {
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22 try_([&] { super::template emplace<T>(std::forward<Args>(args)...); });
23 }
24

25 template <class T, class U, class... Args>
26 auto emplace(std::initializer_list<U> init, Args&&... args)
27 -> decltype(super::template emplace<T>(init, std::forward<Args>(args)...)) {
28 try_([&] { super::template emplace<T>(init, std::forward<Args>(args)...); });
29 }
30

31 template <class U>
32 auto operator=(U&& u) -> decltype(super::operator=(std::forward<U>(u)), *this) {
33 try_([&] { super::operator=(std::forward<U>(u)); });
34 return *this;
35 }
36

37 Variant& operator=(const Variant& that) {
38 try_([&] { super::operator=(that); });
39 return *this;
40 }
41

42 Variant& operator=(Variant&& that) noexcept(noexcept(super::operator=(std::move(that)))) {
43 try_([&] { super::operator=(std::move(that)); });
44 return *this;
45 }
46

47 private:
48

49 template <class F>
50 void try_(F&& f) {
51 try {
52 std::forward<F>(f)();
53 } catch (const std::bad_variant_assign& ex) {
54 *this = std::nullvar;
55 ex.rethrow_nested();
56 }
57 }
58 };

7.5 Double Storage

Using double storage to achieve strong exception safety guarantee may be a tradeoff that many
people are willing to make. For those users, we can augment the proposed variant with another
storage and implement the double storage mechanism. Again, the converse scenario would be
much more difficult since there is no easy way to remove space from an existing object whereas
augmenting one to add space is very easy.

1 template <class.... Types>
2 class Variant {
3 public:
4

5 constexpr Variant() noexcept : which{-1}, storage{} {}
6

7 template <std::size_t I, class... Args>
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8 explicit constexpr Variant(
9 in_place_t (&tag)(std::integral_constant<std::size_t, I>), Args &&... args)

10 : which{0}, storage{{tag, std::forward<Args>(args)...}, {}} {}
11

12 /* ... other in-place constructors ... */
13

14 template <class U> // SFINAE
15 constexpr Variant(U &&u) : which{0}, storage{{std::forward<U>(u)}, {}} {}
16

17 Variant(const Variant &that) : which{0}, storage{{that.storage[that.which]}, {}} {}
18

19 /* Variant(Variant &&that); */
20

21 ~Variant() = default;
22

23 template <size_t I, class... Args>
24 void emplace(Args &&... args) {
25 try_([&] {
26 storage[!which].template emplace<I>(std::forward<Args>(args)...);
27 storage[which] = {};
28 which = !which;
29 });
30 }
31

32 /* ... other emplace ... */
33

34 template <class U> // SFINAE
35 Variant &operator=(U &&u) {
36 using T = get_best_match_t<Types..., U&&>;
37 if (index() == find_index<T, Types...>{}) {
38 storage[which] = std::forward<U>(u);
39 } else {
40 emplace<T>(std::forward<U>(u));
41 }
42 return *this;
43 }
44

45 /*
46 Variant &operator=(const Variant &that);
47 Variant &operator=(Variant &&that);
48 */
49

50 constexpr int index() const noexcept { return storage[which].index(); }
51

52 constexpr const std::type_info &type() const noexcept {
53 return storage[which].type();
54 }
55

56 void swap(Variant &that)
57 noexcept(noexcept(swap(storage[which], that.storage[that.which]))) {
58 swap(storage[which], that.storage[that.which]);
59 }
60

61 private:
62

63 template <class F>
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64 void try_(F &&f) {
65 try {
66 std::forward<F>(f)();
67 } catch (const std::bad_variant_assign &ex) {
68 ex.rethrow_nested();
69 }
70 }
71

72 private:
73

74 int which;
75

76 std::array<std::variant<Types...>, 2> storage;
77 };

8 Implementation

An implementation of the proposed variant design is available at [MPark.Variant].
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