
Botet C++ generic overload functions P0051

Document number: P0051
Date: 2015-09-22
Project: ISO/IEC JTC1 SC22 WG21

Programming Language C++,
Library Evolution Working Group

Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

C++ generic overload functions

Experimental overload functions for C++17. This paper proposes two functions that allow to
overload lambdas or function objects, but also member and non-member functions.

Contents
Introduction.. 1
Motivation and Scope...1

Why do we need an overload function?...2
Design rationale..3

Which kind of functions would overload accept... 3
Binary or variadic interface... 3
Passing parameters by value or by forward reference... 3
reference_wrapper<F> to deduce F& ... 4
Selecting the best or the first overload...4
Result type of resulting function objects... 4
Result type of overload/first_overload.. 4

Open points...5
Technical Specification...5

Header <experimental/functional> Synopsis...5
Implementation...7
Acknowledgements.. 7
References.. 7

Introduction
This paper proposes two functions that allow to overload lambdas or function objects, but also
member and non-member functions:

• overload selects the best overload using C++ overload resolution and

• first_overload selects the first overload using C++ overload resolution.

Motivation and Scope
As lambdas functions, function objects, can’t be overloaded in the usual implicit way, but they can
be “explicitly overloaded” using the proposed overload function:

This function would be especially useful for creating visitors, e.g. for variant.

1

mailto:vicente.botet@wanadoo.fr

Botet C++ generic overload functions P0051

auto visitor = overload(
 [](int i, int j) { … },
 [](int i, string const &j) { … },
 [](auto const &i, auto const &j) { … }
);

visitor(1, std::string{"2"}); // ok - calls (int,std::string) "overload"

The overload function when there are only two parameters could be defined as follows (this is
valid only for lambdas and function objects)

template<class F1, class F2> struct overloaded : F1, F2
{
 overloaded(F1 x1, F2 x2) : F1(x1), F2(x2) {}
 using F1::operator();
 using F2::operator();
};

template<class F1, class F2>
overloaded<F1, F2> overload(F1 f1, F2 f2)
{ return overloaded<F1, F2>(f1, f2); }

Why do we need an overload function?
Instead of the previous example

auto visitor = overload(
 [](int i, int j) { … },
 [](int i, string const &j) { … },
 [](auto const &i, auto const &j) { … }
);

the user can define a function object

struct
{
 auto operator()(int i, int j) { … }
 auto operator()(int i, string const &j) { … }
 template <class T1, class T2>
 auto operator()(T1 const &i, T2 const &j) { … }
) visitor;

So, what are the advantages and liabilities of the overload function.

First the advantages:

1. With overload the user can use existing functions that it can combine, using the function
object would need to define an overload and forward to the existing function.

2. The user can group the overloaded functions as close as possible where they are used and
don't need to define a class elsewhere. This is in line with the philosophy of lambda
functions.

3. Each overload can have its own captured data, either using lambdas or other existing
function objects.

4. Any additional feature of lambda functions, automatic friendship, access to this, and so

2

Botet C++ generic overload functions P0051

forth.

5. first_overload has the additional advantage that it can not be achieved with a function
object as it changes the resolution rules.

Next the liabilities:

1. The overload function generates a function object that is a little bit more complex and so
would take more time to compile.

2. The the result type of overload function is unspecified and so storing it in an structure is
more difficult (as it is the case for std::bind).

3. With the function object the user is able to share the same data for all the overloads.

Note that that the last point could be seen as an advantage and a liability depending on the user
needs.

Design rationale

Which kind of functions would overload accept
The previous definition of overload is quite simple, however it doesn't accept member functions
nor non-member function, as std::bind does, but only function objects and lambda captures.

As there is no major problem implementing it and that their inclusion doesn't degrade the run-time
performances, we opt to allow them also. The alternative would be to force the user to use
std::bind or wrap them with a lambda.

Binary or variadic interface
We could either provide a binary or a variadic overload function.

auto visitor =
overload([](int i, int j) { … },
overload([](int i, string const &j){ … },
 [](auto const &i, auto const &j) { … }
));

The binary function needs to repeat the overload word for each new overloaded function.

We think that the variadic version is not much more complex to implement and makes user code
simpler.

Passing parameters by value or by forward reference
The function overload must store the passed parameters. If the interface is by value, the user will
be forced to move movable but non-copyable function objects. Using forward references has not
this inconvenient, and the implementation can optimize when the function object is copyable.

3

Botet C++ generic overload functions P0051

This has the inconvenient that the move is implicit. We follows here the same design than
when_all and when_any.

reference_wrapper<F> to deduce F&
As with other functions that need to copy the parameters (as std::bind, std::thread, ...), the
user can use std::ref to pass by reference.

The user could prefer to pass by reference if the function object is state-full or if the function object
is expensive to move (copy if not movable) or even s/he would need it if the function object is not
movable at all.

Selecting the best or the first overload
Call the functions based on C++ overload resolution, which tries to find the best match, is a good
generalization of overloading to lambdas and function objects.

However, when trying to do overloading involving something more generic, it can lead to
ambiguities. So the need for a function that will pick the first function that is callable. This allows
ordering the functions based on which one is more specific.

As both cases are useful, the proposal includes two functions: overload and
first_overload.

• overload selects the best overload using C++ overload resolution and

• first_overload selects the first overload using C++ overload resolution.

Fit library name them match and conditional respectively. FTL uses match to means
first_overload.

Result type of resulting function objects
The proposed overload and first_overload functions don't add any constraint on the result
type of the overloaded functions. The result type when calling the resulting function object would
be the one of the selected overloaded function.

However the user can force the result type and in this case the result type of all the overloads must
be convertible to this type (contribution from Matt Calabrese).

This can be useful in order to improve the compile time of a possible match/visit function that could
take advantage when the it knows the result type of all the overloads.

Result type of overload/first_overload
The result type of these functions is unspecified as it is the result type of std::bind.

However when the functions objects have an state it will be useful that the user can inspect the
state. The result type should provide an overload for std::get<F>/std::get<I> functions
(contribution from Matt Calabrese).

4

Botet C++ generic overload functions P0051

These functions should take in account that the overload can be a reference_wrapper<F> in
order to allow get<F&>(ovl).

Open points
The authors would like to have an answer to the following points if there is at all an interest in this
proposal:

• Should the callable be passed by value, forcing the use of std::move?

• A better name for the proposed functions?

best_overload/first_overload, overloads/cases.

• Do we want to expose the result type of these functions?

• Do we want to inspect the state of the result type of these functions via a
get<T>/get<I>?

Technical Specification
Note: The following wording needs of course much more details to describe the behavior of the
unspecified result type using DECAY_COPY and INVOKE.

The wording doesn't contains yet the get<T>/get<I> tuple like functions.

Header <experimental/functional> Synopsis
Add the following declaration in experimental/functional.

namespace std {
namespace experimental {
inline namespace fundamental_v2 {
 template <class ... Fs>
 'see below' overload(Fs &&... fcts);
 template <class R, class ... Fs>
 'see below' overload(Fs &&... fcts);
 template <class ... Fs>
 'see below' first_overload(Fs &&... fcts);
 template <class R, class ... Fs>
 'see below' first_overload(Fs &&... fcts);
}
}
}

Function Template overload
template <class R, class ... Fs>
'see below' overload(Fs &&... fcts);

Requires: Fs are Callable and Movable and the result type of each parameter must be convertible to

5

Botet C++ generic overload functions P0051

R.

Result type: A function object that behaves as if all the parameters were overloaded when calling it.
The result type will contain the nested result_type type alias R. The call to an instance of this
type will select the best overload. If there is not such a best overload, either because there is no
candidate or that there are ambiguous candidates, the invocation expression will be ill-formed.

Returns: An instance of the result type, that contains a decay copy of each one of the arguments.

Throws: Any exception thrown during the construction of the resulting function object.

template <class ... Fs>
'see below' overload(Fs &&... fcts);

Requires: Fs are Callable and Movable.

Result type: A function object that behaves as if all the parameters were overloaded when calling it.
The call to an instance of this type will select the best overload matching the invocation. If there is
not such a overload the invocation expression will be ill-formed.

Returns: An instance of the result type, that contains a decay copy of each one of the arguments.

Throws: Any exception thrown during the construction of the resulting function object.

Function Template first_overload
template <class R, class ... Fs>
'see below' first_overload(Fs &&... fcts);

Requires: Fs are Callable and Movable and the result type of each parameter must be convertible to
R.

Result type: A function object that behaves as if all the parameters were overloaded when calling it.
The result type will contain the nested result_type type alias R. The call to an instance of this
type will select the first overload matching the invocation. If there is not such a overload the
invocation expression will be ill-formed.

Returns: An instance of the result type, that contains a decay copy of each one of the arguments.

Throws: Any exception thrown during the construction of the resulting function object.

template <class ... Fs>
'see below' first_overload(Fs &&... fcts);

Requires: Fs are Callable and Movable.

Result type: A function object that behaves as if all the parameters were overloaded when calling it.
The call to an instance of this type will select the first overload matching the invocation. If there is
not such a overload the invocation expression will be ill-formed.

Returns: An instance of the result type, that contains a decay copy of each one of the arguments.

Throws: Any exception thrown during the construction of the resulting function object.

6

Botet C++ generic overload functions P0051

Implementation
There is an implementation of overload at https://github.com/viboes/tags.

Acknowledgements
Thanks to Scott Pager who suggested to add overloads for non-member and member functions.

Thanks to Fit and FTL authors from where the idea of the first_overload function comes
from.

Thanks to Matt Calabrese for its useful suggestions.

References
• Fit : https://github.com/pfultz2/Fit

• FTL: https://github.com/beark/ftl

7

https://github.com/beark/ftl
https://github.com/pfultz2/Fit
https://github.com/viboes/tags

	Introduction
	Motivation and Scope
	Why do we need an overload function?

	Design rationale
	Which kind of functions would overload accept
	Binary or variadic interface
	Passing parameters by value or by forward reference
	reference_wrapper<F> to deduce F&
	Selecting the best or the first overload
	Result type of resulting function objects
	Result type of overload/first_overload

	Open points
	Technical Specification
	Header <experimental/functional> Synopsis
	Function Template overload
	Function Template first_overload

	Implementation
	Acknowledgements
	References

