
1

Document number: P0036

Date: 2015-09-10

Project: The C++ Programming Language, Core Working Group

Title: Unary Folds and Empty Parameter Packs (revision 1)

Revises: N4358

Reply-to: Thibaut Le Jehan 〈 lejehan.thibaut@gmail.com 〉

Table of Contents

I Introduction . 2
II Motivation and Scope 2
III Alternative solutions 4
IV Proposed wording . 9
V Conclusion . 10
VI Acknowledgements 10

Bibliography 11

I Introduction

This document revises N4358 [1]. While the proposed resolution
is roughly the same, this paper explores other solutions and com-
pares the pros and cons of each. N4358 aimed to remove from
the standard some of the operators from the table ”Value of fold-
ing empty sequences” proposed in N4295, Folding expressions [2].
We still propose to remove operator+, operator*, operator& and
operator| from the aforementioned table. The overall goal is to re-
duce the probability of an unexpected and silent behavior of unary
folds while keeping the design space open for later additions.

II Motivation and Scope

The purpose of allowing empty parameter packs in unary folds is
to allow users not to have to write binary folds for the simplest
cases. However, whatever is the true intent of the users, there is
only one specific type which will always be returned for a given
operator when the parameter pack in the unary fold is empty. Let
us consider the following sum function:

template<typename... Args>

auto sum(Args... args)

{

return (args + ...);

}

Writing such a function is easy, and it does what it is expected
to do most of the time. However, it will always return the integer
0 when args is empty. While generally not a problem, if a function
has an overload taking a parameter of the expected return type of
sum and another overload taking an int parameter, it may be a
problem. Let us demonstrate it with the following piece of code:

3

VectorType vec = { 1, 2, 3, 4, 5 };

// do things with vec...

vec = sum(some_vecs...);

It is common for container classes to overload operator+ for
concatenation. That is for example what std::string does. How-
ever, some container classes such as Eigen’s [3] Array may also
overload operator= to fill container with a given scalar value. With
such a class, the piece of code above will do what it is expected to do
almost every time, but will silently fill vec with 0 when some vecs

is empty instead of assigning an empty vector to it, which would
be the expected behavior.

This unexpected behavior being silent, finding errors linked to
it might be rather difficult. On the other hand, if we decide that the
program above is ill-formed when some vecs is empty, the potential
problem will be obvious when it arises. Note that, even with that
change, simple things remain rather simple:

VectorType vec = { 1, 2, 3, 4, 5 };

// do things with vec

// ...

vec = (some_vecs + ... + 0); // Old behavior, new rules,

// four more key strokes

Since the fix is that simple, we consider that removing the spe-
cial behavior of operator+ with regards to unary folds and empty
parameter packs may help to catch silent errors while it won’t re-
move any expressive power to fold expressions. We also propose
to remove this special behavior from operator*, operator& and
operator| to avoid potential surprises.

That said, we feel that it is worth keeping the special behavior
of operator&&, operator|| and operator, with unary folds and
empty parameter packs. You can find the rationale about this
choice in the discussion about alternative design solutions to the
problem.

4

III Alternative solutions

Before choosing the resolution proposed above, we explored a range
of alternative solutions. Some were based on the thought that it
would be possible to have the cake and eat it too, and other were
even less flexible than the proposed resolution.

A generic solution based on identity elements

First of all, we analyzed the rationale behind the default values pro-
vided when an empty parameter pack is given to an unary fold. It’s
easy to make sense out of the default value assigned to operator+:
”the sum of nothing is nothing” where 0 represents ”nothing”. Oth-
erwise, it seems that the chosen value for an operation represents
the identity element [4] for the magma [5] whose set is the most
commonly used together with the operation. That’s why addition
and multiplication return an integer (0 is the identity element for
the integer addition and 1 is the identity element for the integer
multiplication), the bitwise operations return unsigned integers and
logical operations return boolean values. However, the link between
an empty fold and an identity is less obvious when the operator is
not operator+.

Our first thought was to try to generalize the idea of identity
elements to user-defined types for a given operation. The problem
is that an empty unary fold does not know the type of the elements
it is supposed to perform operations on, it only knows about the
operation it has to perform. A solution would have been to have a
fold expression return an empty fold object when given an empty
parameter pack that could have been contextually converted to the
identity element for a given type. Here is how such an object could
be implemented:

5

template<typename BinaryFunction>

struct empty_fold

{

template<typename T>

constexpr operator T() const

{

return identity_element<T, BinaryFunction>;

}

};

In this piece of code, identity element is a variable template
which can be specialized for any magma for which an identity el-
ement makes sense. Also, note that the compiler would have to
perform a magical match between an operator in the fold expres-
sion and the actual type of BinaryFunction, adding more com-
plexity to the solution. One solution would be to use plus<void>,
multiplies<void> and the other function objects from the header
<functional> to represent these operations. Then, specializing
identity element would be done as follows:

// Identity element for int and addition

template<>

constexpr int identity_element<int, std::plus<>> = 0;

It would allow to write code like this:

int a = (integers + ...); // 0

double b = (... * reals); // 1.0

std::complex<float> c = (numbers * ...); // 1.0f + 0.0if

std::string d = (... + strings); // ""s

That said, it only solves half of the problem. Every magma does
not have an identity element. Some only have a right identity or a
left identity element. To cover these cases, it would be rather easy
to make an empty unary left fold return a left identity element

and an empty unary right fold return a right identity element

where these new variable templates are declared in such a way that
they can be specialized but will fall back to identity element if

6

not specialized (a general identity element can serve as both a right
identity element left identity element):

template<typename T, typename BinaryFunction>

constexpr T left_identity_element

= identity_element<T, BinaryFunction>;

template<typename T, typename BinaryFunction>

constexpr T right_identity_element

= identity_element<T, BinaryFunction>;

However, while this solution tries to be as generic as possi-
ble, it adds more problems than it actually solves: it means that
empty folds are not typed but return a type that is only contex-
tually convertible to other types, possibly leading to silent implicit
conversions. Moreover, it would require a way to represent func-
tions as objects for the sole purpose of template specialization and
would require a mapping between the supported operators and
the equivalent function objects (we used the function objects from
<functional> as an example, but is that even a good idea?). The
behavior would still be surprising with auto.

In the end, it does not really solve problems, adds many rules,
requires implementers and users to care about identity elements
and still lets many cases undefined. The whole thing is too complex
and not really useful outside of the mathematical realm. In order
to test the thing, we still developed a small library [6] to emulate
unary folds with this identity elements mechanism. Anyway... what
do identity elements have to do with folds?

Deducing the return type when possible

Another solution was to deduce to return type from the empty fold
when possible and to make the program ill-formed when it is not
possible. For example, the return type of such an empty fold would
have been known:

7

// res is an std::string

auto res = (std::string(args) + ...);

This solution would also have worked nice with N4072, Fixed
Size Parameter Packs [7] since the proposal allows to write empty
parameter packs with a known type:

template<std::size_t N>

int sum_ints(int...[N] ints)

{

return (ints + ...);

}

int a = sum_ints(1, 2, 3); // 6

int b = sum_ints(); // 0, identity element of int

// with addition

However, even though we don’t have data to back it up, we
think that the cases where the type of an empty unary fold can be
deduced do not represent the majority of the cases. And it would
still only work for types that have an identity element, requiring
users to know what it means and which magmas actually have an
identity element. More rules, little benefit; we don’t think this
solution was appropriate either.

Removing more operators from the table

The previous sections explain why we didn’t choose a generic or
clever solution. Another question is: why didn’t we choose a more
radical solution, namely deleting the whole table instead of letting
three of its lines live?

There are few well-known uses for an overloaded operator,:
the most common one is for assigning a sequence of values (see
Boost.Assign [8] and OpenCV’s Mat [9] for example). This kind
of assignment should now be achieved with initializer lists, mak-
ing this use case obsolete. Another use was to bypass the fact that

8

operator[] can only take one parameter; people nowadays can also
use initializer lists to ”pass” several parameters to operator[]. If
not implicitly defaulted to void(), the default value for operator,
in a fold expression is rather awkward to write, and not pretty ei-
ther; people will probably expect (args , ...) not to do anything
but still be valid when args is an empty parameter pack, and we
think that it’s how it should be. We wouldn’t consider this to be
a surprising behavior.

The story for operator|| and operator&& is a little bit dif-
ferent: these operators are known as boolean operators and are
generally expected to work with bool and only bool. Moreover,
it is generally considered bad practice to overload these operators
since lazy evaluation does not happen anymore when these oper-
ators are overloaded; overloading operator bool instead is the
preferred way to do things. Some compilers such as g++ can even
produce a warning (with -Weffc++) when these operators are over-
loaded for this very reason. We believe that having default values
for these operators wouldn’t surprise any user and wouldn’t make
the code unclear either.

Moreover, folds over operator|| and operator&& respectively
correspond to any and all operations. The standard library func-
tions std::any of and std::all of respectively return false and true
when given an empty range, which means that there already is a
precedent in the standard, which lessens the risk of bad surprise.
These values also happen to be the respective identity elements for
operator|| and operator&&, so everything seems to be consistent
enough.

For these reasons, we decided that the default values chosen for
operator||, operator&& and operator, were reasonable and not
surprising and should therefore be kept in the standard instead of
being removed altogether with the other operators.

9

IV Proposed wording

14.5.3 Variadic templates [temp.variadic]

Delete the following lines from Table N (deleted lines in blue):

Table N. Value of folding empty sequences

Operator Value when parameter pack is empty
* 1

+ int()

& -1

| int()

&& true

|| false

, void()

10

V Conclusion

While our goal is to remove the special cases for operator+,
operator*, operator& and operator| and keep the other ones for
all the reasons mentioned in this proposal, we acknowledge that it
might not be everybody’s point of view. That’s why we propose
to choose one of the three following solutions to solve the problem
(from the most preferred one to the least preferred one):

1. Remove the special cases for operator+, operator*,
operator& and operator|, but keep the other ones.

2. Remove the special cases for operator|| and operator&& as
well.

3. Remove every special case.

VI Acknowledgements

I would like to thank Jens Maurer, Andrew Sutton and Richard
Smith for the feedback about the proposal and the helpful advice.

Bibliography

[1] T. Le Jehan. N4358, unary folds and empty parameter
packs. [Online]. Available: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/n4358.pdf

[2] A. Sutton and R. Smith. N4295, folding expressions. [Online].
Available: https://isocpp.org/files/papers/n4295.html

[3] Eigen c++ template library. [Online]. Available: http:
//eigen.tuxfamily.org/index.php?title=Main Page

[4] Wikipedia. Identity element. [Online]. Avail-
able: http://en.wikipedia.org/w/index.php?title=Identity
element&oldid=626639404

[5] ——. Magma (algebra). [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Magma %
28algebra%29&oldid=670419474

[6] Morwenn. cpp-fold library. [Online]. Available: https:
//github.com/Morwenn/cpp-fold

[7] B. Maurice. N4072, fixed size parameter packs. [Online]. Avail-
able: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n4072.html

11

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4358.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4358.pdf
https://isocpp.org/files/papers/n4295.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://en.wikipedia.org/w/index.php?title=Identity_element&oldid=626639404
http://en.wikipedia.org/w/index.php?title=Identity_element&oldid=626639404
https://en.wikipedia.org/w/index.php?title=Magma_%28algebra%29&oldid=670419474
https://en.wikipedia.org/w/index.php?title=Magma_%28algebra%29&oldid=670419474
https://github.com/Morwenn/cpp-fold
https://github.com/Morwenn/cpp-fold
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4072.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4072.html

BIBLIOGRAPHY 12

[8] T. Ottosen. Boost assignment library. [Online]. Available: http:
//www.boost.org/doc/libs/1 57 0/libs/assign/doc/index.html

[9] Opencv mat class documentation. [Online]. Avail-
able: http://docs.opencv.org/modules/core/doc/basic
structures.html#Mat

http://www.boost.org/doc/libs/1_57_0/libs/assign/doc/index.html
http://www.boost.org/doc/libs/1_57_0/libs/assign/doc/index.html
http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat
http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat

	Introduction
	Motivation and Scope
	Alternative solutions
	Proposed wording
	Conclusion
	Acknowledgements
	Bibliography

