
Document Number: N4499
Date: 2015-05-22
Revises: N4403
Authors: Gor Nishanov <gorn@microsoft.com>

Daveed Vandevoorde <daveed@edg.com>

Draft wording for Coroutines (Revision 2)

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

c© ISO/IEC N4499

Contents
Contents ii

List of Tables iii

1 General 1
1.1 Scope . 1
1.2 Acknowledgements . 1
1.3 Normative references . 1
1.4 Implementation compliance . 1
1.5 Feature testing . 1
1.9 Program execution . 1

2 Lexical conventions 3
2.12 Keywords . 3

3 Basic concepts 4
3.6 Start and termination . 4

5 Expressions 5
5.3 Unary expressions . 5

6 Statements 7
6.5 Iteration statements . 7
6.6 Jump statements . 8

7 Declarations 10

8 Declarators 12
8.4 Function definitions . 12

12 Special member functions 14
12.8 Copying and moving class objects . 14

18 Language support library 15
18.1 General . 15
18.10 Other runtime support . 15
18.11 Coroutines support library . 15

Contents ii

c© ISO/IEC N4499

List of Tables
1 Feature-test macro . 1

2 Language support library summary . 15
3 Coroutine traits requirements . 16
4 Descriptive variable definitions . 19
5 CoroutinePromise requirements . 20

List of Tables iii

c© ISO/IEC N4499

1 General [intro]
1.1 Scope [intro.scope]

1 This Technical Specification describes extensions to the C++ Programming Language (1.3) that enable
definition of coroutines. These extensions include new syntactic forms and modifications to existing language
semantics.

2 The International Standard, ISO/IEC 14882, provides important context and specification for this Technical
Specification. This document is written as a set of changes against that specification. Instructions to modify
or add paragraphs are written as explicit instructions. Modifications made directly to existing text from the
International Standard use underlining to represent added text and strikethrough to represent deleted text.

1.2 Acknowledgements [intro.ack]
This work is the result of collaboration of researchers in industry and academia, including CppDes Microsoft
group and the WG21 study group SG1. We wish to thank people who made valuable contributions within
and outside these groups, including Jens Maurer, Artur Laksberg, Chandler Carruth, Gabriel Dos Reis, Deon
Brewis, Jonathan Caves, James McNellis, Stephan T. Lavavej, Herb Sutter, Pablo Halpern, Robert Schu-
macher, Michael Wong, Niklas Gustafsson, Nick Maliwacki, Vladimir Petter, Shahms King, Slava Kuznetsov,
Tongari J, Lawrence Crowl, and many others not named here who contributed to the discussion.

1.3 Normative references [intro.refs]
1 The following referenced document is indispensable for the application of this document. For dated refer-

ences, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

—(1.1) ISO/IEC 14882:2014, Programming Languages – C++

ISO/IEC 14882:2014 is hereafter called the C++ Standard. Beginning with section 1.9 below, all clause
and section numbers, titles, and symbolic references in [brackets] refer to the corresponding elements of the
C++ Standard. Sections 1.1 through 1.5 of this Technical Specification are introductory material and are
unrelated to the similarly-numbered sections of the C++ Standard.

1.4 Implementation compliance [intro.compliance]
1 Conformance requirements for this specification are the same as those defined in section 1.4 of the C++

Standard. [Note: Conformance is defined in terms of the behavior of programs. —end note]

1.5 Feature testing [intro.features]
An implementation that provides support for this Technical Specification shall define the feature test macro
in Table 1.

Table 1 — Feature-test macro
Name Value Header

__cpp_coroutines 201510 predeclared

1.9 Program execution [intro.execution]
Modify paragraph 7 to read:

§ 1.9 1

c© ISO/IEC N4499

7 An instance of each object with automatic storage duration (3.7.3) is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution of the
block and while the block is suspended (by a call of a function, suspension of a coroutine (8.4.4),
or receipt of a signal).

§ 1.9 2

c© ISO/IEC N4499

2 Lexical conventions [lex]
2.12 Keywords [lex.key]
[Editor’s note: In Lenexa’s EWG session there was a brief discussion on possible keywords. In this document
we use placeholder keywords with suffix -keyword to be replaced with real ones in Kona. A companion paper
discussing keyword alternatives is to appear in pre-Kona mailing.]
Add the keyword placeholders await-keyword, coroutine-return-keyword, and yield-keyword to Table 4
"Keywords".

§ 2.12 3

c© ISO/IEC N4499

3 Basic concepts [basic]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]
Add underlined text to paragraph 3.

The function main shall not be used within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static,
or constexpr is ill-formed. The function main shall not be a coroutine. The name main is not
otherwise reserved. [Example: member functions, classes, and enumerations can be called main,
as can entities in other namespaces. —end example]

§ 3.6.1 4

c© ISO/IEC N4499

5 Expressions [expr]
5.3 Unary expressions [expr.unary]
In this section change the grammar for unary-expression as follows:

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
await-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

5.3.7 noexcept operator [expr.unary.noexcept]
In this section, add a new paragraph after paragraph 3.

4 If in a potentially-evaluated context the expression would contain a potentially-evaluated await-
expression, the program is ill-formed.

5.3.8 Await [expr.await]
Add this section to 5.3.

1 The await-keyword operator is used to suspend evaluation of the enclosing coroutine (8.4.4)
while awaiting completion of the computation represented by the operand expression.

await-expression:
await-keyword cast-expression

2 A potentially-evaluated await-expression shall only appear within the compound-statement of a
function-body outside of a handler (15.3). In a declaration-statement or in the simple-declaration
(if any) of a for-init-statement, a potentially-evaluated await-expression shall only appear in an
initializer of that declaration-statement or simple-declaration. A potentially-evaluated await-
expression shall not appear in a default argument (8.3.6).

3 Let T be the type of the cast-expression. If the cast-expression is a prvalue, let e be a temporary
initialized as-if by T e = cast-expression ; otherwise let e be an lvalue designating the value of
the cast-expression. Let p be the promise object (8.4.4) of the enclosing coroutine, P be the type
of the promise object, h be an object of std::experimental::coroutine_handle<P > referring
to the enclosing coroutine, then await-ready-expr, await-suspend-expr, and await-resume-expr are
expressions defined as follows:

—(3.1) if T is a class type, the unqualified-ids await_ready, await_suspend, await_resume are
looked up in the scope of that class as if by class member access lookup (3.4.5), and if it
finds at least one declaration, await-ready-expr, await-suspend-expr, and await-resume-expr
are e.await_ready(), e.await_suspend(h), and e.await_resume(), respectively;

§ 5.3.8 5

c© ISO/IEC N4499

—(3.2) otherwise, await-ready-expr, await-suspend-expr, and await-resume-expr are await_ready(e),
await_suspend(e, h), and await_resume(e) respectively, where await-ready-expr, await-
suspend-expr, and await-resume-expr are looked up in the associated namespaces (3.4.2).
[Note: Ordinary unqualified lookup (3.4.1) is not performed. —end note]

If the type of await-suspend-expr is cv void, then
await-keyword cast-expression

is equivalent to:
(

await-ready-expr ? await-resume-expr
: (await-suspend-expr , suspend-resume-point , await-resume-expr)

)

otherwise, it is equivalent to:
(

(await-ready-expr && !await-suspend-expr) ? await-resume-expr
: (suspend-resume-point , await-resume-expr)

)

where suspend-resume-points are treated as expressions of type void. Suspend-resume-points are
defined in (8.4.4).

4 An await-expression may only appear in a coroutine with an eventual return type (6.6.4).
5 [Note: An await-expression may appear as an unevaluated operand (5.2.8, 5.3.3, 5.3.7, 7.1.6.2).

The presence of such an await-expression does not make the enclosing function a coroutine and
can be used to examine the type of an await-expression.
[Example:

std::future<int> f();

int main() {
using t = decltype(await-keyword f()); // t is int
static_assert(sizeof(await-keyword f()) == sizeof(int));
cout << typeid(await-keyword f()).name() << endl;

}

—end example] —end note]

§ 5.3.8 6

c© ISO/IEC N4499

6 Statements [stmt.stmt]
6.5 Iteration statements [stmt.iter]
Add underlined text to paragraph 1.

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt; expressionopt) statement
for await-keywordopt (for-range-declaration : for-range-initializer) statement

6.5.4 The range-based for statement [stmt.ranged]
Add underlined text to paragraph 1.

1 For a range-based for statement of the form
for await-keywordopt (for-range-declaration : expression) statement

let range-init be equivalent to the expression surrounded by parentheses1

(expression)

and for a range-based for statement of the form
for await-keywordopt (for-range-declaration : braced-init-list) statement

let range-init be equivalent to the braced-init-list. In each case, a range-based for statement is
equivalent to

{
auto && __range = range-init;
for (auto __begin = await-keywordopt begin-expr,
__end = end-expr;
__begin != __end;
await-keywordopt ++__begin) {
for-range-declaration = *__begin;
statement

}
}

where await-keyword appears if and only if it appears immediately after the for keyword, and
__range, __begin, and __end are variables defined for exposition only, and _RangeT is the type
of the expression, and begin-expr and end-expr are determined as follows:
[Editor’s note: The remainder of paragraph 1 remains unchanged and is not included here.]

1) this ensures that a top-level comma operator cannot be reinterpreted as a delimiter between init-declarators in the decla-
ration of __range.

§ 6.5.4 7

c© ISO/IEC N4499

6.6 Jump statements [stmt.jump]
In paragraph 1 add four productions to the grammar:

jump-statement:
break ;
continue ;
return expressionopt;
return braced-init-list ;
coroutine-return-keyword expressionopt;
coroutine-return-keyword braced-init-list ;
yield-keyword expression ;
yield-keyword braced-init-list ;
goto identifier ;

6.6.3 The return statement [stmt.return]
Add underlined text to paragraph 1:

1 A function returns to its caller by the return statement. A return statement shall not appear
in a coroutine.

6.6.4 The coroutine-return-keyword statement [stmt.coreturn]
Add this section to 6.6.

1 A coroutine returns to its caller by the coroutine-return-keyword statement or when suspended
at a suspend-resume point (8.4.4). A coroutine-return-keyword statement shall not appear
in a function other than a coroutine.

2 If the promise type (8.4.4) of the coroutine defines the member function return_void, the corou-
tine is considered to have an eventual return type of void, if the promise type (8.4.4) of the
coroutine defines the member function return_value, the coroutine is considered to have a non-
void eventual return type, otherwise, the coroutine is considered not to have an eventual return
type. If the promise type defines both return_value and return_void member functions, the
program is ill-formed.

3 In this section, p refers to the promise object (8.4.4) of the enclosing coroutine.
4 A coroutine-return-keyword statement with neither an expression nor a braced-init-list can be

used only in coroutines that do not have an eventual return type or have an eventual return type
of void. In the latter case, completion of the coroutine is signaled to the promise of the coroutine
by calling p.return_void(). A coroutine-return-keyword statement with an expression of
non-void type can be used only in coroutines producing an eventual value; the value of the
expression is supplied to the promise of the coroutine by calling p.return_value(expression)
or p.return_value(braced-init-list). Flowing off the end of a coroutine is equivalent to a
coreturn with no value; this results in undefined behavior in a coroutine with non-void return
type.

5 Prior to returning to the caller, a coroutine evaluates the p.final_suspend() predicate. If
p.final_suspend() contextually converted to bool evaluates to true, the coroutine suspends
at final suspend point (8.4.4), otherwise, the coroutine destroys the coroutine state (8.4.4) and
frees the memory dynamically allocated (if any) to store the state.

6 A coroutine-return-keyword statement with an expression of type cv void can be used only in
functions without an eventual return type or with an eventual return type of void; the expression
is evaluated just before the call to p.final_suspend() and p.return_void() respectively.

§ 6.6.4 8

c© ISO/IEC N4499

6.6.5 The yield statement [stmt.yield]
Add this section to 6.6.

Let yielded value be the operand of the yield-keyword statement and p be the promise object
of the enclosing coroutine. If the result type of p.yield_value(yielded-value) is of type cv
void, then the yield-keyword statement is equivalent to:

p .yield_value(yielded-value);
suspend-resume-point

otherwise, it is equivalent to:
if (p .yield_value(yielded-value)) {

suspend-resume-point
}

§ 6.6.5 9

c© ISO/IEC N4499

7 Declarations [dcl.dcl]
7.1.5 The constexpr specifier [dcl.constexpr]
Add the underlined text as the last item in the list in paragraph 3. Note that the preceding (unmodified)
items in the C++ Standard are elided in this document.

3 The definition of a constexpr function shall satisfy the following constraints:
—(3.1) . . .
—(3.2) . . .
—(3.3) . . .
—(3.4) . . .
—(3.5) it shall not be a coroutine (8.4.4);

7.1.6.4 auto specifier [dcl.spec.auto]
Add the underlined text to paragraph 2.

2 The placeholder type can appear with a function declarator in the decl-specifier-seq, type-specifier-
seq, conversion-function-id, or trailing-return-type, in any context where such a declarator is
valid. If the function declarator includes a trailing-return-type (8.3.5), that specifies the declared
return type of the function. If the declared return type of the function contains a placeholder
type, the return type of the function is deduced from return, coroutine-return-keyword, and
yield-keyword statements in the body of the function, if any.

Add the underlined text to paragraph 9.
9 If a function with a declared return type that contains a placeholder type has multiple return,

coroutine-return-keyword, and yield-keyword statements, the return type is deduced for
each return, coroutine-return-keyword, and yield-keyword statement. If the type deduced
is not the same in each deduction, the program is ill-formed.

Add paragraphs 16 through 18.
16 If a coroutine has a declared return type that contains a placeholder type, then the return type

of the coroutine is deduced as follows:
—(16.1) If a yield-keyword statement and an await-expression are present, then the return type

is std::experimental::async_stream<T>, where T is deduced from the yield-keyword
statements as if a yield-keyword statement were a return statement in a function with
declared type auto without a trailing-return-type.

—(16.2) Otherwise, if an await-expression is present in a function, then the return type is
std::experimental::task<T> where type T is deduced from coroutine-return-keyword
statements as if a coroutine-return-keyword statement were a return statement in a
function with declared type auto without a trailing-return-type.

—(16.3) Otherwise, if a yield-keyword statement is present in a function, then the return type is
std::experimental::generator<T>, where T is deduced from the yield-keyword state-
ments as if a yield-keyword statement were a return statement in a function with declared
type auto without a trailing-return-type.

[Example:

§ 7.1.6.4 10

c© ISO/IEC N4499

// deduces to std::experimental::generator<char>
auto f() { for(auto ch: "Hello") yield-keyword ch; }

// deduces to std::experimental::async_stream<int>
auto ticks() {

for(int tick = 0;; ++tick) {
yield-keyword tick;
await-keyword sleep_for(1ms);

}
}

future<void> g();

// deduces to std::experimental::task<void>
auto f2() { await-keyword g(); }

—end example]
17 The templates std::experimental::generator, std::experimental::task, and

std::experimental::async_stream are not predefined; if the appropriate headers are not in-
cluded prior to a use — even an implicit use in which the type is not named (7.1.6.4) — the
program is ill-formed.

§ 7.1.6.4 11

c© ISO/IEC N4499

8 Declarators [dcl.decl]
8.3.5 Functions [dcl.fct]
Add paragraph 16.

16 If the parameter-declaration-clause terminates with an ellipsis that is not part of abstract-
declarator , a function shall not be coroutine (8.4.4).

8.4 Function definitions [dcl.fct.def]
8.4.4 Coroutines [dcl.fct.def.coroutine]
Add this section to 8.4.

1 A function is a coroutine if it contains one or more suspend-resume-points introduced by a
potentially-evaluated await-expression (5.3.8) and a yield-keyword statement (6.6.5). Every
coroutine also has an implicit initial and final suspend-resume point as described later in this
section.

2 [Note: From the perspective of the caller, a coroutine is just a function with that particular
signature. The fact that a function is implemented as a coroutine is unobservable by the caller.
—end note]

3 A coroutine needs a set of related types and functions to complete the definition of its semantics.
These types and functions are provided as a set of member types or typedefs and member func-
tions in the specializations of class template std::experimental::coroutine_traits (18.11.1).

4 For a coroutine f, if f is a non-static member function, let P1 denote the type of the implicit object
parameter (13.3.1) and P2 ... Pn be the types of the function parameters; otherwise let P1 ... Pn

be the types of the function parameters. Let R be the return type and F be the function-body
of f, T be a type std::experimental::coroutine_traits<R,P1,...,Pn>, and P be the type
denoted by T::promise_type. Then, the coroutine behaves as if its body were:

{
P p ;
if (p .initial_suspend()) {

suspend-resume-point // initial suspend point
}
F’
if (p .final_suspend()) {

suspend-resume-point // final suspend point
}

}

where local variable p is defined for exposition only and F’ is F if P does not define a set_-
exception member function, and

try { F } catch(...) { p .set_exception(std::current_exception()); }

otherwise. No header needs to be included for this use of the function std::current_exception.
An object denoted as p is the promise object of the coroutine f and its type is a promise type of
the coroutine. An execution of a coroutine is suspended when it reaches a suspend-resume-point.

§ 8.4.4 12

c© ISO/IEC N4499

5 A suspension of a coroutine returns control to the current caller of the coroutine. For the first
return of control from the coroutine, the return value is obtained by invoking the member function
get_return_object (18.11.3) of the promise object.

6 A suspended coroutine can be resumed to continue execution by invoking a resumption member
functions (18.11.2.4) of an object of coroutine_handle<P> type associated with this instance
of the coroutine, where type P is the promise type of the coroutine.

7 A coroutine may need to allocate memory to store objects with automatic storage duration local
to the coroutine. If so, it must use the allocator object obtained as described in Table 3 in clause
18.11.1.

8 A coroutine state consists of storage for objects with automatic storage duration that are live
at the current point of execution or suspension of a coroutine. The coroutine state is destroyed
when the control flows off the end of the function or the destroy member function (18.11.2.4)
of an object of std::experimental::coroutine_handle<P> associated with that coroutine is
invoked. In the latter case objects with automatic storage duration that are in scope at the
suspend point are destroyed in the reverse order of the construction. If the coroutine state
required dynamic allocation, the memory is freed. If destroy is called for a coroutine that is not
suspended, the program has undefined behavior.

9 When a coroutine is invoked, each of its parameters is copied/moved to the coroutine state, as
specified in 12.8. The copy/move operations are indeterminately sequenced with respect to each
other. A reference to a parameter in the function-body of the coroutine is replaced by a reference
to the copy of the parameter.

10 If the coroutine state initialization, a call to get_return_object, or a promise object construction
throws an exception, any memory dynamically allocated for the coroutine state is freed.

11 If type T defines static member function get_return_object_on_allocation_failure (18.11.1)
and the coroutine state is allocated dynamically, the result of an allocation call needs to be
compared with nullptr, and if it is nullptr, coroutine must return control to the current caller
of the coroutine and the return value is obtained by a call to T::get_return_object_on_-
allocation_failure(). [Note: This provision allows coroutines to be used in environments
where exception use is not possible to report allocation failures. —end note]

12 [Example:

// coroutine hello world
std::experimental::generator<char> hello_fn() {

for (auto ch: "Hello, world") yield-keyword ch;
}

int main() {
// coroutine as a lambda
auto hello_lambda = []{ for (auto ch: "Hello, world") yield-keyword ch; };

for (auto ch : hello_lambda())
cout << ch;

for (auto ch : hello_fn())
cout << ch;

}

—end example]

§ 8.4.4 13

c© ISO/IEC N4499

12 Special member functions [special]
In this section add new paragraph after paragraph 5.

6 A special member function shall not be a coroutine.

12.8 Copying and moving class objects [class.copy]
Add underlined text to paragraph 31.

31 When certain criteria are met, an implementation is allowed to omit the copy/move construc-
tion of a class object, even if the constructor selected for the copy/move operation and/or the
destructor for the object have side effects. In such cases, the implementation treats the source
and target of the omitted copy/move operation as simply two different ways of referring to the
same object, and the destruction of that object occurs at the later of the times when the two
objects would have been destroyed without the optimization.2 This elision of copy/move opera-
tions, called copy elision, is permitted in the following circumstances (which may be combined
to eliminate multiple copies):
—(31.1) in a return statement in a function with a class return type, when the expression is the

name of a non-volatile automatic object (other than a function or catch-clause parameter)
with the same cv-unqualified type as the function return type, the copy/move operation can
be omitted by constructing the automatic object directly into the function’s return value

—(31.2) When a parameter would be copied/moved to the coroutine state (8.4.4) copy move can be
omitted by continuing to refer to the function parameters instead of referring to their copies
in the coroutine state.

2) Because only one object is destroyed instead of two, and one copy/move constructor is not executed, there is still one
object destroyed for each one constructed.

§ 12.8 14

c© ISO/IEC N4499

18 Language support library
[language.support]
18.1 General [support.general]
Add a row to Table 2 for coroutine support header <experimental/coroutine>.

Table 2 — Language support library summary

Subclause Header(s)
18.2 Types <cstddef>

<limits>
18.3 Implementation properties <climits>

<cfloat>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.11 Coroutines support <experimental/coroutine>

<csignal>
<csetjmp>
<cstdalign>

18.10 Other runtime support <cstdarg>
<cstdbool>
<cstdlib>
<ctime>

18.10 Other runtime support [support.runtime]
Add underlined text to paragraph 4.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this
International Standard. A setjmp/longjmp call pair has undefined behavior if replacing the
setjmp and longjmp by catch and throw would invoke any non-trivial destructors for any
automatic objects. A call to setjmp or longjmp has undefined behavior if invoked in a coroutine.
See also: ISO C 7.10.4, 7.8, 7.6, 7.12.

18.11 Coroutines support library [support.coroutine]
Add this section to clause 18.

1 The header <experimental/coroutine> defines several types providing compile and run-time
support for coroutines in a C++ program.
Header <experimental/coroutine> synopsis

namespace std {
namespace experimental {

§ 18.11 15

c© ISO/IEC N4499

inline namespace coroutines_v1 {
// 18.11.1 coroutine traits
template <typename R, typename... ArgTypes>

class coroutine_traits;

// 18.11.2 coroutine handle
template <typename Promise = void>

class coroutine_handle;

// 18.11.2.7 comparison operators:
bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

} // namespace coroutines_v1
} // namespace experimental

// 18.11.2.8 hash support:
template <class T> struct hash;
template <class P> struct hash<experimental::coroutine_handle<P>>;

} // namespace std

18.11.1 coroutine traits [coroutine.traits]
1 This subclause defines requirements on classes representing coroutine traits, and defines the class

template coroutine_traits that satisfies those requirements.
2 The coroutine_traits may be specialized by the user to customize the semantics of coroutines.

18.11.1.1 Coroutine traits requirements [coroutine.traits.requirements]
1 In Table 3, X denotes a trait class instantiated as described in 8.4.4; If a coroutine is a member

function, then a1 denotes the implicit this parameter, a2, ... an refer to explicit parameters of
the coroutine, otherwise, a1, a2, ... an denote the parameters of the coroutine.

Table 3 — Coroutine traits requirements [tab:coroutine.traits.requirements]

Expression Behavior
X::promise_type X::promise_type must be a type satisfying coroutine promise re-

quirements (18.11.3)
X::get_allocator(a1,
a2, ... an)

(optional) Given a set of arguments passed to a coroutine, returns
an allocator (17.6.3.5) that the implementation shall use to dynam-
ically allocate memory for coroutine state if dynamic allocation is
required. If get_allocator is not present, the implementation shall
use allocator<char>.

X::get_return_-
object_on_allocation_-
failure()

(optional) If present, it is assumed that an allocator’s allocate
function will return nullptr in case of an allocation failure. If a
coroutine requires dynamic allocation, it must check if an allocate
returns nullptr, and if so it shall use the expression X::get_-
return_object_on_allocation_failure() to construct the return
value and return back to the caller.

§ 18.11.1.1 16

c© ISO/IEC N4499

18.11.1.2 Struct template coroutine_traits [coroutine.traits.primary]
1 The header <experimental/coroutine> shall define the class template coroutine_traits as

follows:
namespace std {
namespace experimental {
inline namespace coroutines_v1 {

template <typename R, typename... Args>
struct coroutine_traits {

using promise_type = typename R::promise_type;
};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

18.11.2 Struct template coroutine_handle [coroutine.handle]
namespace std {

namespace experimental {
inline namespace coroutines_v1 {

template <>
struct coroutine_handle<void>
{

// 18.11.2.1 construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.2 export/import
static coroutine_handle from_address(void* addr) noexcept;
void* to_address() const noexcept;

// 18.11.2.3 capacity
explicit operator bool() const noexcept;

// 18.11.2.4 resumption
void operator()() const;
void resume() const;
void destroy() const;

// 18.11.2.5 completion check
bool done() const noexcept;

};

template <typename Promise>
struct coroutine_handle : coroutine_handle<>
{

// 18.11.2.1 construct/reset
using coroutine_handle<>::coroutine_handle;
coroutine_handle(Promise*) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.6 promise access
Promise& promise() noexcept;
Promise const& promise() const noexcept;

§ 18.11.2 17

c© ISO/IEC N4499

};
} // namespace coroutines_v1
} // namespace experimental

} // namespace std

1 Let P be a promise type of the coroutine (8.4.4). An object of the type coroutine_handle<P >
is called a coroutine handle and can be used to refer to a suspended or executing coroutine. Such
a function is called a target of a coroutine handle. A default constructed coroutine_handle
object has no target.
18.11.2.1 coroutine_handle construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: !*this.
coroutine_handle(Promise* p) noexcept;

2 Requires: p points to a promise object of a coroutine.
3 Postconditions: !*this and addressof(this->promise()) == p.

coroutine_handle& operator=(nullptr_t) noexcept;
4 Postconditions: !*this.
5 Returns: *this.

18.11.2.2 coroutine_handle export/import [coroutine.handle.export]

static coroutine_handle from_address(void* addr) noexcept;
void* to_address() const noexcept;

1 Postconditions: coroutine_handle<>::from_address(this->to_address()) == *this.

18.11.2.3 coroutine_handle capacity [coroutine.handle.capacity]

explicit operator bool() const noexcept;

1 Returns: true if *this has a target, otherwise false.

18.11.2.4 coroutine_handle resumption [coroutine.handle.resumption]

void operator()() const;
void resume() const;

1 Requires: *this refers to a suspended coroutine.
2 Effects: resumes the execution of a target function. If the function was suspended at the

final suspend point, terminate is called (15.5.1).
void destroy() const;

3 Requires: *this refers to a suspended coroutine.
4 Effects: destroys the target coroutine (8.4.4).

18.11.2.5 coroutine_handle completion check [coroutine.handle.completion]

bool done() const noexcept;

1 Requires: *this refers to a suspended coroutine.
2 Returns: true if the target function is suspended at final suspend point, otherwise false.

§ 18.11.2.5 18

c© ISO/IEC N4499

18.11.2.6 coroutine_handle promise access [coroutine.handle.prom]

Promise& promise() noexcept;
Promise const& promise() const noexcept;

1 Requires: *this refers to a coroutine.
2 Returns: a reference to a promise of the target function.

18.11.2.7 Comparison operators [coroutine.handle.compare]

bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.to_address() == y.to_address().
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: x.to_address() < y.to_address().
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

3 Returns: !(x == y).
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

4 Returns: (y < x).
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

5 Returns: !(x > y).
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

6 Returns: !(x < y).

18.11.2.8 Hash support [coroutine.handle.hash]

template <class P> struct hash<experimental::coroutine_handle<P>>;

1 The template specializations shall meet the requirements of class template hash (20.9.12).

18.11.3 Coroutine promise requirements [coroutine.promise]
1 A user supplies the definition of the coroutine promise to implement desired high-level semantics

associated with a coroutines discovered via instantiation of struct template coroutine_traits.
The following tables describe the requirements on coroutine promise types.

Table 4 — Descriptive variable definitions

Variable Definition
P a coroutine promise type
p a value of type P
e a value of exception_ptr type
h a value of experimental::coroutine_handle<P> type
v an expression or braced-init-list

§ 18.11.3 19

c© ISO/IEC N4499

Table 5 — CoroutinePromise requirements [CoroutinePromise]

Expression Note
P{} Construct an object of type P
p.get_return_object() The get_return_object is invoked by the coroutine to construct

the return object prior to reaching the first suspend-resume point, a
return statement, or flowing off the end of the function.

p.return_value(v) Invoked by a coroutine when a coroutine-return-keyword state-
ment with an expression or a braced-init-list is encountered in a corou-
tine (6.6.4).

p.return_void() If present, invoked when a coroutine-return-keyword statement is
encountered as described in (6.6.4). A promise type shall not define
both return_void and return_value member functions.

p.set_exception(e) The set_exception is invoked by a coroutine when an unhandled ex-
ception occurs within a function-body of the coroutine. If the promise
does not provide set_exception, an unhandled exception will prop-
agate from the coroutine normally.

p.yield_value(v) The yield_value is invoked when yield-keyword statement is en-
countered in the coroutine. If promise does not define yield_value,
yield-keyword statement may not appear in the coroutine body.

p.initial_suspend() if p.initial_suspend() evaluates to true, the coroutine will sus-
pend at initial suspend point (8.4.4).

p.final_suspend() if p.final_suspend() evaluates to true, the coroutine will suspend
at final suspend point (8.4.4).

2 [Example: This example illustrates full implementation of a promise type for a simple genera-
tor.

#include <iostream>
#include <experimental/coroutine>

struct generator {
struct promise_type {

int current_value;
auto get_return_object() { return generator{this}; }
auto initial_suspend() { return true; }
auto final_suspend() { return true; }
void yield_value(int value) { current_value = value; }

};

bool move_next() {
coro.resume();
return !coro.done();

}

int current_value() { return coro.promise().current_value; }

~generator() { coro.destroy(); }
private:

explicit generator(promise_type* myPromise) : coro(myPromise)
{
}

§ 18.11.3 20

c© ISO/IEC N4499

std::experimental::coroutine_handle<promise_type> coro;
};

generator f() {
yield-keyword 1;
yield-keyword 2;

}

int main() {
auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

—end example]

§ 18.11.3 21

	Contents
	List of Tables
	1 General
	1.1 Scope
	1.2 Acknowledgements
	1.3 Normative references
	1.4 Implementation compliance
	1.5 Feature testing
	1.9 Program execution

	2 Lexical conventions
	2.12 Keywords

	3 Basic concepts
	3.6 Start and termination
	3.6.1 Main function

	5 Expressions
	5.3 Unary expressions
	5.3.7 noexcept operator
	5.3.8 Await

	6 Statements
	6.5 Iteration statements
	6.5.4 The range-based for statement

	6.6 Jump statements
	6.6.3 The return statement
	6.6.4 The coroutine-return-keyword statement
	6.6.5 The yield statement

	7 Declarations
	7.1.5 The constexpr specifier
	7.1.6.4 auto specifier

	8 Declarators
	8.3.5 Functions
	8.4 Function definitions
	8.4.4 Coroutines

	12 Special member functions
	12.8 Copying and moving class objects

	18 Language support library
	18.1 General
	18.10 Other runtime support
	18.11 Coroutines support library
	18.11.1 coroutine traits
	18.11.1.1 Coroutine traits requirements
	18.11.1.2 Struct template coroutine_traits

	18.11.2 Struct template coroutine_handle
	18.11.2.1 coroutine_handle construct/reset
	18.11.2.2 coroutine_handle export/import
	18.11.2.3 coroutine_handle capacity
	18.11.2.4 coroutine_handle resumption
	18.11.2.5 coroutine_handle completion check
	18.11.2.6 coroutine_handle promise access
	18.11.2.7 Comparison operators
	18.11.2.8 Hash support

	18.11.3 Coroutine promise requirements

