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ABSTRACT

This document describes one possible implementation of a matrix class and matrix
multiplication using the data-parallel SIMD types introduced in [N4184]. The example
shows the basic use of SIMD types for manual transformation of a loop over scalars to
a loop with increased stride using SIMD vector loads and stores and SIMD operations
in the loop body.
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N4454 0 Remarks

0 REMARKS

• In the following 𝒲𝚃 denotes the number of scalar values (width) in a SIMD vector
of type T (sometimes also called the number of SIMD lanes)

• Matrix multiplication is not the best motivating example for the unique fea-
tures of SIMD types. The reason this example is important is because matrix
multiplication is a relatively simple algorithm (though hard to implement with
maximum efficiency) and a well-known and well-researched problem.

1 MATRIX MULTIPLICATION INTRODUCTION

Matrix multiplication takes two two-dimensional arrays as input (sizes 𝑁 × 𝐾 and
𝐾 × 𝑀 ) and produces one two-dimensional array as output (size 𝑁 × 𝑀 ). Equation
(1) shows an example with (4 × 3) ⋅ (3 × 2) → (4 × 2). The values for matrix 𝐶 are
calculated as 𝑐𝑖,𝑗 = ∑𝑘 𝑎𝑖,𝑘𝑏𝑘,𝑗.

⎡
⎢
⎢
⎢
⎣

𝑎0,0 𝑎0,1 𝑎0,2

𝑎1,0 𝑎1,1 𝑎1,2

𝑎2,0 𝑎2,1 𝑎2,2

𝑎3,0 𝑎3,1 𝑎3,2

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢⎢
⎣

𝑏0,0 𝑏0,1

𝑏1,0 𝑏1,1

𝑏2,0 𝑏2,1

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑐0,0 𝑐0,1

𝑐1,0 𝑐1,1

𝑐2,0 𝑐2,1

𝑐3,0 𝑐3,1

⎤
⎥
⎥
⎥
⎦

(1)

A C++ class for arbitrarily sized matrices is not overly hard to implement, but it
distracts from the objective of this document. Therefore, in the following I will only
discuss square matrices (i.e. (𝑁 × 𝑁) ⋅ (𝑁 × 𝑁) → (𝑁 × 𝑁)).

2 MATRIX MEMORY LAYOUT

There are two conventional memory layouts used for storing matrices:

row-major Consecutive elements of the rows of the matrix are contiguous in mem-
ory. Thus the matrix 𝐵 in (1) is stored as [𝑏0,0, 𝑏0,1, 𝑏1,0, 𝑏1,1, …]. Consequently,
row-vectors out of the matrix are contiguous in memory.

column-major Consecutive elements of the columns of the matrix are contiguous
in memory. Thus the matrix 𝐵 in (1) is stored as [𝑏0,0, 𝑏1,0, 𝑏2,0, 𝑏0,1, …]. Conse-
quently, column-vectors out of the matrix are contiguous in memory.
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1 for (size_t i = 0; i < N; ++i) {
2 for (size_t j = 0; j < N; ++j) {
3 C[i][j] = A[i][0] * B[0][j];
4 for (size_t k = 1; k < N; ++k) {
5 C[i][j] += A[i][k] * B[k][j];
6 }
7 }
8 }

Listing 1: The basic matrix multiplication algorithm.

Other alternatives, such as recursive storage of sub-matrices are also used. To
simplify the discussion in this document I will only consider the “native” layout of
C/C++. An array declared as float A[N][N] and accessed as A[i][j] is contiguous
in memory in the j index and therefore uses row-major storage.

3 MATRIX MULTIPLICATION

Given three arrays declared as float A[N][N], float B[N][N] and float C[N][N],
the matrix multiplication 𝐴⋅𝐵 = 𝐶 can be implemented as shown in Listing 1. For large
matrices this algorithm is cache-inefficient. The cache efficiency can be improved via
blocking. The resulting implementation may use up to 12 nested loops instead of the
three shown in Listing 1.

For large matrices, cache optimization is ultimately more important than vectori-
zation of the algorithm. Since the purpose of this document is to show an example
use of [N4184] with a well-known problem, I will leave cache-optimization as exercise
for the reader and focus only on vectorization. In the following we therefore consider
the caches to be large enough for our matrix sizes.

3.1 vectorization opportunities

The algorithm executes 𝑁 3 multiplications, all of which are independent and could
execute in any order. The algorithm also executes (𝑁 − 1)𝑁 2 additions, all of which
depend on the result of either a multiplication or another addition. Floating-point
addition is not commutative. However, for matrix multiplication we may reorder the
additions because it only distributes the statistical error differently.

Note that the code in Listing 1 lost all this information when the mathematical rules
for matrix multiplication were transferred to a C++ algorithm. Of course, the compiler
may transform the loop under the “as-if” rule, but ultimately has to reconstruct infor-
mation the developer was unable to express in the algorithm. Explicit vectorization
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1 using V = Vector<T>;
2 for (size_t i = 0; i < N; ++i) {
3 for (size_t j = 0; j < N; j += V::size()) {
4 V c_ij = A[i][0] * V(&B[0][j], Aligned);
5 for (size_t k = 1; k < N; ++k) {
6 c_ij += A[i][k] * V(&B[k][j], Aligned);
7 }
8 c_ij.store(&C[i][j], Aligned);
9 }

10 }

Listing 2: Basic vectorization of the matrix multiplication algorithm.

(partially) solves this issue of lost information about data-parallelism. Explicit vec-
torization can either be expressed via loops with vector semantics (e.g. [N3831]) or
types with data-parallel operations. In the following I will discuss the latter approach.

One approach for vectorization of matrix multiplication builds upon vectorizing
scalar products (row-vectors times column-vectors). (e.g. 𝑐0,0 = 𝑎0,0𝑏0,0 + 𝑎0,1𝑏1,0 +
𝑎0,2𝑏2,0) Since this requires a reduction and leads to a scalar store, this is not the
most efficient vectorization.

A second approach multiplies a column-vector from 𝐴 with a single scalar entry
from 𝐵 which is broadcast to a full SIMD vector:

[𝑐(𝑘)
𝑖,𝑗 , 𝑐(𝑘)

𝑖+1,𝑗, 𝑐(𝑘)
𝑖+2,𝑗, …] = [𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗, 𝑎𝑖+1,𝑘 ⋅ 𝑏𝑘,𝑗, 𝑎𝑖+2,𝑘 ⋅ 𝑏𝑘,𝑗, …]

The resulting 𝑐(𝑘)
𝑖,𝑗 values subsequently need to be added up: 𝑐𝑖,𝑗 = ∑𝑘 𝑐(𝑘)

𝑖,𝑗 . These
summations can execute independently for different (𝑖, 𝑗) pairs. Thus, we reuse the
[𝑐(𝑘)

𝑖,𝑗 , 𝑐(𝑘)
𝑖+1,𝑗, 𝑐(𝑘)

𝑖+2,𝑗, …] vectors to execute the additions in parallel. The resulting vector
in 𝐶 is again a column-vector.

A third approach uses row-vectors instead of column-vectors, but otherwise the
same idea as above:

[𝑐𝑖,𝑗, 𝑐𝑖,𝑗+1, 𝑐𝑖,𝑗+2, …] = ∑
𝑘

[𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗, 𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗+1, 𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗+2, …] (2)

Since we will use row-major storage for the matrices, this leads to efficient SIMD
vector loads and stores and thus the preferred vectorization approach.

The scalar algorithm from Listing 1 can thus be rewritten with the SIMD types from
[N4184] as shown in Listing 2. Lines 4–6 calculate 𝒲𝚃 entries for the result matrix
𝐶 in parallel. In line 4, one entry from 𝐴 is read at 𝑎𝑖,0 and 𝒲𝚃 entries from 𝐵 are
read in parallel at [𝑏0,𝑗, 𝑏0,𝑗+1, 𝑏0,𝑗+2, … , 𝑏0,𝑗+𝒲𝚃−1]. The multiplication between these
two objects expresses a component-wise multiplication of two SIMD vectors. There-
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1 template <typename T, size_t N>
2 class Matrix {
3 using V = Vector<T>;
4 static constexpr size_t NPadded = (N + V::size() - 1) / V::size() * V::size();
5 using RowArray = std::array<T, NPadded>;
6 alignas(V::MemoryAlignment) std::array<RowArray, N> data;
7

8 public:
9 RowArray &operator[](size_t i) { return data[i]; }

10 const RowArray &operator[](size_t i) const { return data[i]; }
11 };

Listing 3: The declaration of a matrix class.

fore, the 𝑎𝑖,0 value is broadcast to a full SIMD vector with 𝒲𝚃 entries, all containing
the 𝑎𝑖,0 value. The variable c_ij thus stores the result of

[𝑎𝑖,0 ⋅ 𝑏0,𝑗, 𝑎𝑖,0 ⋅ 𝑏0,𝑗+1, 𝑎𝑖,0 ⋅ 𝑏0,𝑗+2, … , 𝑎𝑖,0 ⋅ 𝑏0,𝑗+𝒲𝚃−1]

. In line 6 the results of

[𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗, 𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗+1, 𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗+2, … , 𝑎𝑖,𝑘 ⋅ 𝑏𝑘,𝑗+𝒲𝚃−1] ∀0 < 𝑘 < 𝑁

are added component-wise to c_ij. The algorithm thus implements the parallel ex-
pression of the matrix multiplication formulated in equation 2. Line 8 finally stores
the 𝒲𝚃 scalar values from the local variable c_ij to the two-dimensional array C,
starting at the address &C[i][j] and overwriting 𝒲𝚃 consecutive values of type T.

The implementation in Listing 2 makes two assumptions about the B and C arrays:

1. The allocated row size of the matrix storage is a multiple of V::size() (line 3)
and thus larger than N, if necessary.

2. The addresses of the first entries (&X[0][0]) are aligned correctly for aligned
loads and stores (lines 4, 6, and 8).

Consequently, a Matrix<T, N> class can be declared as shown in Listing 3.
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3.2 vector width

The matrix multiplication algorithm and the Matrix class as shown in Listings 2 and
3 are portable to different targets with different 𝒲𝚃. Thus, a target without SIMD
support could use 𝒲𝚃 = 1 and an accelerator card a large value, such as 𝒲𝚃 = 32 or
larger. In an abstract view, the description of the matrix multiplication algorithm in
Listing 2 describes an arbitrary width of data-parallelism.

Note, however, that for large 𝒲𝚃 the memory overhead for small matrices may be
unreasonably large (because of the row padding for alignment). For small matrices
the Vector<T> class might not be the best solution for fully portable and highly
efficient code. SimdArray<T, N>1 might be better suited for small matrices.

3.3 optimizations

Besides caches for large matrices, the load/store unit is a limiting factor already for
small matrices. This can be optimized via unrolling in such a way that fewer loads
must be executed. By unrolling the outer loop (over i) by a factor 𝑢, the vector
load from B[k][j] can be reused 𝑢 times. Listing 4 shows the complete code for a
matrix multiplication. Note that this approach is valid for non-SIMD code as well. How-
ever, this example shows that the approach can be directly translated to the SIMD
type variant. Note also that the inner loops execute the expression V(&b[k][j],
Vc::Aligned) with the same k and j. The compiler has enough information available
to optimize the multiple load expressions to a single load and reuses the register.

The second optimization in Listing 4 interleaves the final multiply-add with the
store. The lines 20 and 36 could execute in the preceding loop. By moving them
between the stores, the pressure on the store port is relieved.

If the code is compiled for a target system supporting FMA2 instructions, the com-
piler can fuse the multiplication and addition operators in the middle- or back-end.
This does not require extra effort in the Vector<T> implementation (e.g. expression
templates could be used to generate FMA calls already in the library). The important
point is that Vector<T> provides an intuitive syntax/API without loss of flexibility in
the compiler middle- and back-ends.

1 I can describe this class in another paper if there is interest.
2 fused multiply-add
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1 template <typename T, size_t N>
2 Matrix<T, N> operator*(const Matrix<T, N> &a, const Matrix<T, N> &b)
3 {
4 constexpr size_t UnrollOuterloop = 4;
5 using V = Vc::Vector<T>;
6 Matrix<T, N> c;
7 constexpr size_t i0 = N / UnrollOuterloop * UnrollOuterloop;
8 for (size_t i = 0; i < i0; i += UnrollOuterloop) {
9 for (size_t j = 0; j < N; j += V::size()) {

10 V c_ij[UnrollOuterloop];
11 for (size_t n = 0; n < UnrollOuterloop; ++n) {
12 c_ij[n] = a[i + n][0] * V(&b[0][j], Vc::Aligned);
13 }
14 for (size_t k = 1; k < N - 1; ++k) {
15 for (size_t n = 0; n < UnrollOuterloop; ++n) {
16 c_ij[n] += a[i + n][k] * V(&b[k][j], Vc::Aligned);
17 }
18 }
19 for (size_t n = 0; n < UnrollOuterloop; ++n) {
20 c_ij[n] += a[i + n][N - 1] * V(&b[N - 1][j], Vc::Aligned);
21 c_ij[n].store(&c[i + n][j], Vc::Aligned);
22 }
23 }
24 }
25 for (size_t j = 0; j < N; j += V::size()) {
26 V c_ij[UnrollOuterloop];
27 for (size_t n = i0; n < N; ++n) {
28 c_ij[n - i0] = a[n][0] * V(&b[0][j], Vc::Aligned);
29 }
30 for (size_t k = 1; k < N - 1; ++k) {
31 for (size_t n = i0; n < N; ++n) {
32 c_ij[n - i0] += a[n][k] * V(&b[k][j], Vc::Aligned);
33 }
34 }
35 for (size_t n = i0; n < N; ++n) {
36 c_ij[n - i0] += a[n][N - 1] * V(&b[N - 1][j], Vc::Aligned);
37 c_ij[n - i0].store(&c[n][j], Vc::Aligned);
38 }
39 }
40 return c;
41 }

Listing 4: Matrix multiplication blocked on the outer loop for improved register
reusage.
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4 DISCUSSION

Matrix multiplication is a well-researched problem for current CPUs (to a large part
because of LINPACK and the TOP500). Compilers are able to automatically vector-
ize some matrix multiplications and may completely fail on others (mainly for odd
sizes). The unrolling/blocking optimizations are often the most important optimiza-
tions, though, and cannot be simplified through a data-parallel programming abstrac-
tion. For a developer that wants to optimize matrix multiplication for a given system
it often is helpful to have full control over the vectorization and iteration approach.
While only assembly language gives the highest control and can eliminate compiler
differences, on the C/C++ level only intrinsics or SIMD types provide the necessary
control.

4.1 automatic vs. manual optimization

Compilers are, in principle, able to reorganize loops and implement blocking for a
given cache hierarchy. For applications depending on maximum efficiency for ac-
ceptable computing costs, it is often not feasible to rely on the compiler, though.
Instead most of these projects rely on libraries that provide optimized (i.e. hand-
tuned) implementations of such operations.

SIMD types can be used to implement such libraries. They provide the interface to
access low-level optimizations with a standard C++ interface and at the same time
reduce differences between different targets.

4.2 fixed vector width or not?

In Listings 2–4, the vector width 𝒲𝚃 appears as Vector<T>::size(). This size is
a constant expression and thus at compile time the SIMD types use a fixed width.
The width used at compile time thus turns the matrix multiplication (i.e. the matrix
rows) into chunks that work most efficient on the target hardware. This means that
the objects used in the matrix multiplication (i.e. of type Vector<T>) abstract the
data-parallel execution units of the target machine.

If the width were not fixed in terms of the type, the expression of the matrix mul-
tiplication would probably look like shown in Listing 5. Note that you can, except
for the store function, use std::valarray<T> to actually implement Listing 5. The
store line only needs to be replaced with std::copy(std::begin(c_i), std::end
(c_i), &C[i][0]). Results of a benchmark compiled with GCC 4.9.1 is presented in
Table 1.
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1 using V = HypotheticalDataParallelType<T>;
2 for (size_t i = 0; i < N; ++i) {
3 V c_i = A[i][0] * V(&B[0][0], N);
4 for (size_t k = 1; k < N; ++k) {
5 c_i += A[i][k] * V(&B[k][0], N);
6 }
7 c_i.store(&C[i][0]);
8 }

Listing 5: Matrix multiplication implementation using a hypothetical data-parallel
vector type that does not have a fixed width at compile time.

float (auto-vectorized) 4.92 FLOP/cycle
Vc::Vector<float> (Listing 4) 9.67 FLOP/cycle
std::valarray<float> (Listing 5) 0.448 FLOP/cycle
std::valarray<float> (zero-copy) 1.67 FLOP/cycle

Table 1: Benchmark Results.

The issue with valarray<T> is that it is runtime sized and therefore must allocate
the necessary memory dynamically. Consequently, it must do a full copy of the ma-
trix 2𝑁 times. If this is supposed to perform efficiently, the Matrix class storage
must be converted to valarray<T> to avoid the copies (the benchmark result of
this approach is shown in the last row of Table 1). This shows that valarray<T> (or
any other runtime sized data-parallel type) cannot be used as easily as Vector<T>
in only an algorithm implementation. To avoid unnecessary memory allocations and
copies, a runtime sized type always must be used pervasively in data structures
and algorithms. However, as Table 1 shows, even then the compiler has a hard time
generating optimal code. And the opportunities for the developer to optimize via his
understanding of register usage is significantly restrained.

4.3 data type for matrix storage

The matrix multiplication example presented above uses scalar types for data stor-
age and SIMD types for data processing. It would be possible to build the matrix
storage with SIMD types and thus eliminate the explicit load and store expressions.
However, this makes the broadcasts (e.g. a[i + n][k]) harder to express, since a
third subscript operator is required and the last index must be split into an iteration
over vectors and an iteration over vector entries. Furthermore, the SIMD type stor-
age approach makes any other operations which require access to scalars on the
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matrix more complicated to express. The only conceivable abstraction for simplify-
ing this issue is a container class that replaces the inner std::array which provides
accessors for both scalar and vector iteration, correctly solving the inherent aliasing
issue.
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