
Document number: N4438
Date: 2015-04-09
Project: Programming Language C++, Transactional Memory Working Group
Reply to: Brett Hall <bretthall@fastmail.com>

Industrial Experience with Transactional Memory at Wyatt Tech-
nology

With work progressing on the ISO C++ Transactional Memory TS, we offer a study on our use of a library-
based transactional memory system in C++ at Wyatt Technology. Our results have been extremely positive
and can perhaps offer some insight into what can be done to improve the transactional memory support in
C++ as it evolves.

Introduction

While there has been much research into transactional memory (TM) there have been few examples of its
use in industry that we know of. There are some examples from the high-performance computing and super
computing sectors. There are also examples in the Haskell programming community. But all of those examples
are from rather specialized niches. For the past three years at Wyatt Technology we’ve been using TM in
a somewhat different context: a data collection and analysis application for use with our light scattering
instruments called Dynamics.

In this paper we detail our transactional memory system and how we’ve applied it. We’ll talk about what
went well, what problems we’ve run into, and what features of the system turned out to be useful. Hopefully
this can give some insight to the committee about how to standardize TM and what features to include in
the system that is standardized.

Rationale

Why did we use transactional memory? Answering that question requires looking at the history of Dynamics.
Over the years that Dynamics has been in use the amount of data that it has been tasked with handling
has increased by orders of magnitude (due to improvements in both the instruments that it interfaces with
and its own automation factilities). Unfortunately, thread-safety of the data had been originally handled
by only allowing the data to be used in the main GUI thread of the program. Other threads were used
to communicate with instruments, but once data was received from an instrument it was sent to the GUI
thread where it was put into the data store and then only accessible from that thread. This precluded the
parallelization of calculations, a big problem since the multi-core era was dawning. Even worse, since the
data could only be processed on the GUI thread, the GUI would suffer from freezes and stuttering while
analyses were being carried out. For common file sizes this could go on for minutes.

There were many attempts to solve the thread-safety issues but they all lead to a cascading series of changes
that were going to require much of the program to be rewritten. Given competitive pressures for new features
this issue was shelved for a few years as other functionality was worked on.

During this interim period, I had begun experimenting with the Haskell programming language and its
implementation of transactional memory. As an exercise I implemented a system similar to theirs in C++.
Also during this time period lots of planning was being done for the day when we would have time to attack the
Dynamics thread-safety issue again. As this planning was going on we kept finding cases where transactional
memory seemed to be a good, if not perfect, fit. Doing some proof of concept work and performance testing
of the transactional memory system that I had built showed that it could fit our purposes. When the time
came to attack the thread-safety issue, which was going to require rewriting much of the core of the program,
the decision was made to use transactional memory in the data layer. It quickly expanded to fill many other
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niches in the program as well. About the only place we don’t use it, due to performance concerns, is in the
low-level instrument communication code.

Dynamics

Dynamics is a data collection and analysis application for Wyatt Technology’s dynamic and phase analysis
light scattering instruments. Since much of our success with transactional memory can probably be attributed
to the nature of this application it would be good to have some details on the structure of our data and the
nature of the calculations being done. We’ll limit our discussion to the dynamic light scattering data, the
phase analysis data is similar.

The main piece of data used in dynamic light scattering is the auto-correlation function (ACF) which measures
how well a signal correlates with itself over time (for our instruments the signal is the intensity of the light
scattered by the sample). In Dynamics the data is structured as a series of measurements where each
measurement is further broken down into a series of acquisitions. Each acquisition captures an ACF. The
number of acquisitions in a measurement and how long the signal is correlated for in each acquisition are
controlled by the user.

Once we have a set of acquisitions we perform a variety of calculations on the ACFs to tease out the properties
of the samples being analyzed. Once the results for the acquisitions are calculated we apply a set of data
filters and the ACFs of the acquisitions whose results pass the filters are averaged to create an ACF for the
measurement (thus reducing the amount of noise in the measurement’s data). The analyses are then repeated
on this average ACF to determine the results for the measurement. The thing to keep in mind about all this
is that the calculations for the acquisitions are independent and can thus be carried out in parallel. The
data filters create a dependency between the acquisition results and the measurement’s calculations, but
the calculations of each measurement in a data file are independent. Thus the system has a lot of easily
exploitable parallelism.

Our TM System

The transactional memory system that we have been using is entirely library based — no compiler modifications
were possible as we use Microsoft Visual Studio as our primary development platform. As such it is an
explicit system where any value that is to be transacted needs to be declared as a stm::var<value_type>
where value_type is the type of the value that is being transacted. The main interface of stm::var is:

namespace stm
{

template<typename value_type>
class var
{
public:

value_type get () const;
const value_type& get (atomic& at) const;

void set (const value_type& value);
void set (const value_type& value, atomic& at);

};
}

Objects of type atomic represent transactions. Functions that take one of these objects as an argument
can only be called from within a transaction. The versions of get and set above that do not take atomic
arguments are convenience functions that start a transaction and then call the versions that do take an
atomic argument. From the interface it should be obvious that value_type must be copyable — we currently
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do not support the storage of move only types in stm::var1. It is possible for the transacted version of get
to return a reference since get will copy the value into the transaction and thus we can guarantee that the
reference will be good for the length of the transaction (one just has to be sure to copy the object if it is
returned out of the transaction).

Transactions are started using the atomically function that is effectively2 defined as

namespace stm
{

template <typename func>
auto atomically (const func& f,

const atomic_params& args = atomic_params ())
-> decltype (f (std::declval<atomic>()));

}

After starting the transaction and creating an atomic object, atomically calls f (the function passed in)
passing it the atomic object that has been created. When f returns, atomically handles validating any
reads and then commits any writes if the validation succeeds. Here validation means checking the read
variables for modifications by other threads. If any other thread has committed a transaction that writes to a
variable that has been read in our transaction, and we read that variable before the transaction in the other
thread committed (thus getting an older value), then our transaction has a conflict and must restart. If there
are no conflicts then our writes are made visible to other threads in an atomic fashion (i.e. if one write is seen
then all writes from the transaction must be visible).

It is possible to manually validate during a transaction by calling the validate method on the atomic object
– failed validation causes the transaction to be restarted immediately. If a long running calculation is done
inside of a transaction then manual validation is used to avoid doing extra work if the transaction becomes
invalid due to changes made in another thread. It is also possible to validate individual stm::var objects
which proves useful when one knows that there is a high chance for some subset of the read variables to have
conflicts and one wants to avoid having to pay for a validation of all the reads. There are also cases where
manual validation is needed to ensure consistency of reads of variables that are used together in a transaction
(this will be discussed in more detail below).

Throwing an exception from f will cause the transaction to be rolled back with the exception being allowed
to propagate out of the call to atomically. It is the responsibility of code outside of the call to atomically
to catch any exceptions thrown by functions that are run inside of atomically.

The first call of get on a stm::var within a given transaction yields the most recently committed value, even
if that commit happened after the start of the transaction. Every call to get for a given stm::var in a given
transaction will yield that same value, unless set is called. After a call to set the stm::var will have the set
value for the remainder of the transaction, unless set is called again.

Starvation, i.e. short transactions repeatedly causing conflicts in another long running transaction preventing
the long running transaction from ever committing, is a possibility in any transactional system. In our system
we address this by allowing the caller of atomically to specify a limit on how many conflicts are acceptable
and what to do if this limit is reached. The two options are to throw an exception out of atomically or to
run locked. The latter option prevents any other threads from committing transactions until the transaction
that is running locked has committed, thus preventing it from being starved any further.

1Transaction rollback precludes the transparent use of move semantics in our TM system. In order to support move semantics
we will probably need to resort to some sort of wrapper objects around the values to be moved into or out of Vars. These objects
would be responsible for restoring the unmoved state in the event of transaction rollback as different action needs to be taken
depending on whether the moved object originated from inside or outside the transaction.

2There are some details being glossed over here. We need to apply some meta-programming in order to transparently handle
functions that return void being one example.
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Transactions can be nested to arbitrary levels3. When a nested transaction commits, its reads and writes are
merged into the parent transaction. Any reads done in a child transaction first check the parent transaction
to see if a value for the variable has already been read. If it has, the value that was read in the parent
transaction is used instead of reading the value out of the variable itself. If an exception is thrown out of the
child transaction that transaction is rolled back and this continues as the stack is unwound until the exception
is caught. In other words, if a stack frame for a call to atomically is unwound then the transaction that
was started by that call to atomically will be rolled back. Any transactions which were started by calls to
atomically before the try/catch block that caught the exception was entered will not be rolled back and
will continue from the point where the exception was caught. If a child transaction encounters a conflict then
all transactions on the stack are rolled back and the root transaction is restarted4.

Since transactions are restarted in the event of conflicts we cannot have any non-idempotent side-effects take
place during the transaction. There are cases where we need to be able to carry out side-effects based on
the values read in the transaction though, and in the face of nested transactions we cannot simply carry
out the side-effects based on the return value of the transaction (we might still be in a transaction at that
point if there is nesting going on). So side-effects can be scheduled to run when the root transaction commits
by calling the after method of atomic and passing it a function object. Side-effects scheduled in nested
transactions are simply passed up through the parent transactions until the root transaction commits, at
which point all the scheduled side-effect function objects are run. atomic also has an on_fail method that
allows side-effects to be run in the event that the transaction has a conflict and fails to commit.

If it is known that a function has side-effects and needs to be prevented from being called within a transaction
then the NO_ATOMIC macro can be used as one of the function’s arguments. NO_ATOMIC is an argument with
a default value that, when it is created, checks to see if a transaction is currently running. If a transaction
is running then an exception is thrown – most likely ending the program. Unfortunately this is a run-time
check, there is no way that we know of for our system to enforce this constraint at compile-time in C++.

Waiting for certain conditions among the transactional variables to prevail is accomplished with the retry
function. When this function is called during a transaction, that transaction’s thread is put to sleep until one
of the variables that it has read is changed by another thread. At that point the transaction is restarted so
that conditions can be checked again. retry can optionally be given a timeout that causes an exception to
be thrown when the timeout is reached. It is up to the caller of atomically to catch this exception. When
a child transaction is retried the retry is propagated all the way up to the root transaction which will be
restarted when a change is made on another thread.

Another feature of our system related to retry is or_else. This function takes a list of transactional functions
to run and runs the first function in a transaction. If that function completes then the result of that function
is returned by or_else. If the function calls retry then, instead of going to sleep and waiting for a change to
one of the variables read in the transaction, or_else will call the second function in the list. This continues
until one of the functions is able to complete a transaction without retrying, with the result of the function
that didn’t retry becoming the result of or_else. If all the functions retry then the thread goes to sleep
until there are changes made on another thread at which point the functions are run again starting at the
front of the list.

There can be cases where we don’t care about seeing a consistent view of memory. Instead, we only want to
prevent races on reading stm::var objects. In this case one can use inconsistently instead of atomically.
This function takes a function argument which it calls with an inconsistent object which can be used to
safely read values from variables. Those values need not be consistent, multiple reads of the same variable can

3In order to maintain composibility in our system we have to allow the nesting of transactions. If nesting were not allowed
then one would have to know that no transactions are started in every chain of function calls leading to a function that starts a
transaction. This is a point where our system differs from Haskell’s – nesting of transactions is not possible in their system due
to type system constraints (in Haskell’s system transactions can only be started from the IO monad and once in a transaction
there is no way to safely return to the IO monad to start another transaction short of the current transaction ending).

4We have to roll back all the transactions that are ancestors of the child transaction in question to avoid the possibility of
an endless loop. If the conflicting value was read in an ancestor transaction and we don’t roll back that ancestor transaction
then the child transaction will fail over and over again as it tries to validate the stale value that it is getting from the ancestor
transaction.
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yield different values within the same call to inconsistently. Setting variables and starting transactions
are not allowed in this context. No validation is done on the reads when inconsistently finishes.

Results

Overall our experience with transactional memory has been very positive, the absence of locks makes it much
easier to reason about program behavior. Since our system is explicit we trade having to make decisions
about fine grained versus coarse grained locking schemes for decisions about what level to transact things at
(e.g. store a whole object in a stm::var versus giving the object stm::var members). The latter seems to
have a much lower cognitive load, probably because one doesn’t have to constantly worry about introducing
deadlock possibilities.

One concern we had when switching to transactional memory was the learning curve. Given the novel nature
of this technology it is nearly impossible to hire anyone that has experience with it. It is rare to interview
a candidate that has even heard of transactional memory, let alone used it. Luckily our fears proved to
be unfounded: we’ve added two members to the Dynamics team since switching to TM (one right out of
university, the other a senior level engineer). Both were able to come up to speed with TM in a reasonable
amount of time – i.e. they both seemed to reach a decent comfort level and stop making easy mistakes within
a month. There are still more subtle mistakes that one can make that require a more experienced hand to
diagnose and fix, but those are rare and we’ll touch on them later.

Beyond the basics of transactions the next most useful feature of our system has been retry. In fact, managing
without it would be extremely difficult since the use of condition variables is problematic in transactional
code (one cannot undo signaling a condition variable in the event of transaction rollback). retry is also much
more flexible than condition variables as it is much easier to compose many conditions to wait on.

Given the usefulness of retry it’s probably surprising that or_else has not seen any use in our code.
This feature was implemented with the thought that it would be very useful, else why put the time into
implementing it. I believe that it may be the case that it was simply forgotten and retry was used instead
in cases where or_else may have yielded simpler code. So it is not the case that or_else is useless, it is just
not as central to transactional programming as retry is.

Another very useful feature is the after method of atomic. In many cases it provides the only reliable way
to interface transactional code to non-transactional code that contains side-effects. The on_fail method
has less uses as RAII is the better option in most cases where resources need to be released in the event of
rollback. It does see some use though.

As detailed above our system is explicit, only values stored in stm::var objects are transacted. While this
does impose a bit more of a cognitive load than an implicit system as we need to decide what to transact and
what not to, it also has some advantages as well. For example, most of our calculations first grab some data
and parameters (all values that are transacted). These values are then used in computations that are private
to the thread and involve intermediate values that do not need to be transacted. Then the results are stored
back into transactional variables. With an explicit system all of this can be done in one transaction as we
only have to pay for the transactional reads at the start and the writes at the end. If the user changes the
parameters during the calculation then our calculation will be automatically restarted since the parameters
are transacted.

With an implicit system one would have to read the data and parameters in one transaction, carry out the
calculations outside of a transaction, then start a new transaction where the data and parameters are read
again and compared to those obtained in the first transaction. The results are only written if this final check
show that there have been no changes to the data or parameters while the calculation was in progress. And if
one wants to check for parameter changes during the calculations to avoid doing unnecessary work due to
changes made in other threads, the explicit system again has a slight edge as one doesn’t have to start new
transactions every time the parameters are checked for changes. Instead, the current transaction just needs
to be validated.
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The implicit system does have the advantage of being easier to program as one doesn’t have to make decisions
about what to transact. And if a good enough privatization analysis could be done by the compiler then
much of the overhead listed above could be done away with. But in this case it seems like a lot of the work
has shifted from deciding what to transact to checking to make sure that what you hoped was privatized
actually was (or making sure that you are minimizing the amount of work done in your transactions).

Our implementation is based on one global reader-writer mutex. The mutex is locked for reading when a
value is read from a stm::var for the first time in a transaction (subsequent reads of the same variable simply
read the value from the transaction itself which is local to the current thread). A write lock is obtained
when committing so that only one commit can proceed at a time and no reads can be done while a commit
is in progress. This has worked well, but testing easily shows the the effects of contention for locks on the
mutex. Say we have a set of threads, with each thread having its own set of stm::var objects that are only
accessible in that thread. In each thread we are continually starting transactions, modifying the variables,
and committing. In this system we observe an exponential drop-off in the commit rate per thread as more
threads are added and they contend for locks on the mutex. This hasn’t been much of an issue since the
number of threads that we run are limited by the number of cores that our customers have in their machines,
two to four for the vast majority of our customers. It is something that will need to be addressed in the
future are larger numbers of cores becomes more common place.

Our system is weakly atomic, values that are read from stm::var can be modified at will. Short of modifying
the language itself I don’t know how one would create a strongly atomic system in C++. If a type is stored by
value in stm::var then there’s no problem, there’s no way for two threads to get a hold of the same instance
of an object since objects are always copied into the stm::var on set and copied out on get. For types
stored by reference5 we have to enforce that the stored value is either immutable or internally transacted (the
latter meaning that any mutable state in the object is also transacted). So while our system is weakly atomic
we enforce strong atomicity by policy.

As mentioned above, starvation can be an issue in transactional memory systems. Fearing this, we implemented
the option of running locked if a transaction has too many conflicts. We did have some areas of the program
where it was suspected that starvation could be an issue so the running locked option was applied preemptively.
Through much real world testing we’ve found that we never seem to run transactions locked. This doesn’t
mean that it could never happen, but our program doesn’t seem to have the right kind of contention among
transactions to cause starvation to be an issue. We’ve also never encountered any bugs where starvation was
the cause either.

The main problems that we have run into have to do with non-idempotent side-effects in transactions. Most
of the time these are mistakes that new-comers make as they ascend the learning curve. An example being
a dialog that should be displayed once but ends up being displayed some random number of times as the
transaction that it is displayed in has conflicts and is restarted. This type of issue is easily diagnosed and
fixed. There have been a few cases of more subtle side-effect bugs which have required much more effort
to fix. But these instances have been rare and generally are no more difficult to diagnose and fix than a
moderately difficult deadlock.

A related type of issue is caused by our system’s handling of transactional reads. Specifically, when a variable
is read for the first time in a transaction that value is saved and will always be returned in that transaction
(unless the variable is written to in the transaction). This opens the door to using inconsistent values in a
transaction. Say we have two transactional variables and we are going to use their values in some calculation.
There is a chance that we read the first variable and then another thread changes the value of both variables
before we get a chance to read the second. This resultsin the values of the two variables being inconsistent in
our transaction. Most of the time this doesn’t matter, the validation at the end of the transaction will catch
the inconsistency and restart the transaction. But sometimes we need to do something with the values during
the transaction that will cause a problem if the values are inconsistent. Say we need to allocate memory
where the amount to allocate is given by the difference of the two variables. If the variables are consistent
then the first will always be greater than the second and we’ll get a valid size for the memory allocation.

5In our system storing by reference really means storing by shared_ptr so the object lifetimes can be ensured between
transactions in different threads.
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But if the values are inconsistent then we could end up with the first value less than the second yielding a
very large size for the memory allocation when the difference is taken, so large that the allocation will fail6.
One solution would be to validate the transaction on every read, but this would be prohibitively expensive
performance-wise. Instead we’ve opted to live with the possibility of these types of bugs and fix them when
discovered by manually inserting a transaction validation to ensure consistency before the values that must
be consistent are used. These bugs have proved to be rare and now that we know what to look for they are
rapidly diagnosed and fixed. It would be better if this validation was automated though and we are currently
looking into ways to do this without causing too large of a performance hit.

Conclusion

Our experience with transactional memory at Wyatt has been extremely positive. The two biggest issues
that transactional memory can theoretically have, starvation and side-effects, have either not been an issue at
all (the former) or not been that difficult to deal with given a bit of discipline (the latter). While it would be
nice to be able to address the side-effect issue through the type system, that just isn’t feasible with a library
only solution in C++. And compared with the costs of lock-based programming it is a small price to pay.
The only remaining issue, inconsistent reads, is less a general problem of transactional memory and more a
quirk of how our system handles reads.

Outside of the basics of the reading and writing of transactional variables the most used feature of our TM
system is retry. The system would be extremely difficult to use without this feature. The related feature of
or_else turned out to not be used at all, probably due to neglecting to remember that it existed. That is
not to say that it couldn’t be useful, there could be sections of code that could be simplified through the
application of this feature. Due to time constraints we have not attempted to identify such areas in our code
at this time.

We also make a lot of use of after (to schedule side-effects to take place when the current transaction
commits) in order to interface with non-transactional code. The related on_fail facility is used much less as
RAII can handle most cases where resources need to be released when a transaction is rolled back.

One thing to keep in mind is that our application may be among those ideally suited to the use of transactional
memory. For the most part we don’t have tight performance constraints: we don’t have real-time guarantees
to meet, we’re not trying achieve a high frame-rate in a game, or beat other stock traders to market. The only
place where performance is paramount is in instrument communication where we need to be sure to keep up
with the data that the instrument is sending us (in this case we use lock-free queues instead of transactional
memory). But once the data gets into Dynamics it is managed via transactional memory from there on out.

We do a lot of non-trivial numerical calculations, but they are structured such that the overhead of the TM
system is negligible compared to the calculations themselves. We do a few transactional reads at the start to
get data and parameters, the calculations then run without doing anything transactionally, and then the
results are written out transactionally. So the overhead consists only of a few reads, a few writes, validation of
the small number of reads, and the commit of a small number of writes. Also, while the calculations can take
minutes if a lot of data has been collected, by pushing all processor intensive tasks onto background threads
and prioritizing calculations based on what the user is looking at in the GUI we can hide any performance
issues. This is not to say that we are unconcerned with performance, it is just not at the forefront as it is in
other application domains. In other words, we can afford to optimize for developer time at the expense of
performance to some degree. Transactional memory has allowed us to do this without giving up too much
performance compared to code that uses locks.

6Arguably we shouldn’t be allocating memory like this in a transaction as it is a side-effect. It can be rendered idempotent
through the use of RAII to reclaim the memory in the event of a rollback though. So we allow the allocation of memory in
transactions.
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