
1

Document number: N4358

Date: 2015-01-20

Project: The C++ Programming Language, Core Working Group

Title: Unary Folds and Empty Parameter Packs

Reply-to: Thibaut Le Jehan 〈 lejehan.thibaut@gmail.com 〉

Table of Contents

I Introduction . 2
II Motivation and Scope 2
III Design Decisions . 4
IV Wording . 5
V Discussion . 6
VI Acknowledgements 6

Bibliography 7

I Introduction

The purpose of this document is to remove from the standard some
of the operators from the table ”Value of folding empty sequences”
proposed in N4295, Folding expressions [1]. We propose to remove
operator+, operator*, operator& and operator| from the afore-
mentioned table. The overall goal is to reduce an unexpected and
silent behaviour of unary folds while keeping the design space open
for later additions.

II Motivation and Scope

The purpose of allowing empty parameter packs in unary folds is
to allow users not to have to write binary folds for the simplest
cases. However, whatever is the true intent of the users, there is
only one specific type which will always be returned for a given
operator when the parameter pack in the unary fold is empty. Let
us consider the following sum function:

template<typename... Args>

auto sum(Args... args)

{

return (args + ...);

}

Writing such a function is easy, and it does what it is expected
to do most of the time. However, it will always return the integer
0 when args is empty. While generally not a problem, if a function
has an overload taking a parameter of the expected return type of
sum and another overload taking an int parameter, it may be a
problem. Let us demonstrate it with the following piece of code:

VectorType vec = { 1, 2, 3, 4, 5 };

// do things with vec

// ...

vec = sum(some_vecs...);

3

It is common for container classes to overload operator+ for
concatenation. That is for example what std::string does. How-
ever, some container classes such as Eigen’s [2] Array may also
overload operator= to fill container with a given scalar value. With
such a class, the piece of code above will do what it is expected to do
almost everytime, but will silently fill vec with 0 when some vecs

is empty instead of assigning an empty vector to it, which would
be the expected behaviour.

This unexpected behaviour being silent, finding errors linked
to it might be rather difficult. On the other hand, if we decide
that the program above is ill-formed when some vecs is empty, the
potential problem will be obvious when it arises. Note that, even
with that change, simple things remain rather simple:

VectorType vec = { 1, 2, 3, 4, 5 };

// do things with vec

// ...

vec = (some_vecs + ... + 0); // Expected behaviour,

// four more key strokes

Since the fix is that simple, we consider that removing the spe-
cial behaviour of operator+ with regards to unary folds and empty
parameter packs may help to catch silent errors while it won’t re-
move any expressive power to fold expressions. We also propose
to remove this special behaviour from operator*, operator& and
operator| to avoid potential surprises.

That said, we feel that it is worth keeping the special behaviour
of operator&&, operator|| and operator, with unary folds and
empty parameter packs: overloading these operators is generally
considered bad practice anyway. The only well-known use for an
overloaded operator, is for assignment of a sequence of values (see
Boost.Assign [3] and OpenCV’s Mat [4]). This kind of assignment
should know be achieved with initializer lists anyway. Expression

4

templates and EDSL may also overload the three aforementioned
operators, but care is already required to use these idioms.

III Design Decisions

First of all, we analyzed the rationale behind the default values
provided when an empty parameter pack is given to an unary fold.
It seems that the chosen value for an operation represents the iden-
tity element [5] for the groupoid whose set is the most commonly
used together with the operation. That’s why addition and multi-
plication return an integer (0 is the identity element for the integer
addition and 1 is the identity element for the integer multiplica-
tion), the bitwise operations return unsigned integers and logicial
operations return boolean values.

Therefore, our first thought was to try to generalize the idea of
identity elements to user-defined types for a given operation. How-
ever, after haven given it some thought, the whole thing seemed too
complex [6] and not really useful outside of mathematical libraries.
Therefore, we dropped the idea of creating a generic mechanism to
return the identity element of a group when an unary fold is given
an empty parameter pack. We instead propose to remove some
of the valid operators to increase safety, avoid potentially silent
errors, and keep the design space open.

While we weren’t able to find a generic solution for this specific
problem, somebody might be able to analyze it again and to provide
an elegant solution with the very same syntax but with different
semantics.

5

IV Wording

14.5.3 Variadic templates [temp.variadic]

Delete the following lines from Table N (deleted lines in blue):

Table N. Value of folding empty sequences

Operator Value when parameter pack is empty
* 1

+ int()

& -1

| int()

&& true

|| false

, void()

6

V Discussion

If N4072, Fixed Size Parameter Packs [7] or an equivalent proposal
gets accepted into the standard, we think that giving an empty
parameter pack of integers to an unary fold should be well-defined:

template<std::size_t N>

int sum_ints(int...[N] ints)

{

return (ints + ...);

}

int a = sum_ints(1, 2, 3); // 6

int b = sum_ints(); // 0, identity element of integers

// with addition

That would make it possible to reintroduce some default values for
operator+, operator*, operator& and operator| as proposed in
N4295 when the type is already known. While genericity would
still not be fully achieved, we would get both syntactic sugar and
type safety for the most simple cases.

VI Acknowledgements

Thanks Jens Mauer, Andrew Sutton and Richard Smith for the
feedback about the proposal and the helpful advice.

Bibliography

[1] A. Sutton and R. Smith. N4295, folding expressions. [Online].
Available: https://isocpp.org/files/papers/n4295.html

[2] Eigen c++ template library. [Online]. Available: http:
//eigen.tuxfamily.org/index.php?title=Main Page

[3] T. Ottosen. Boost assignment library. [Online]. Available: http:
//www.boost.org/doc/libs/1 57 0/libs/assign/doc/index.html

[4] Opencv mat class documentation. [Online]. Avail-
able: http://docs.opencv.org/modules/core/doc/basic
structures.html#Mat

[5] Wikipedia. Identity element. [Online]. Avail-
able: http://en.wikipedia.org/w/index.php?title=Identity
element&oldid=626639404

[6] Morwenn. cpp-fold library. [Online]. Available: https:
//github.com/Morwenn/cpp-fold

[7] B. Maurice. N4072, fixed size parameter packs. [Online]. Avail-
able: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n4072.html

7

https://isocpp.org/files/papers/n4295.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.boost.org/doc/libs/1_57_0/libs/assign/doc/index.html
http://www.boost.org/doc/libs/1_57_0/libs/assign/doc/index.html
http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat
http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat
http://en.wikipedia.org/w/index.php?title=Identity_element&oldid=626639404
http://en.wikipedia.org/w/index.php?title=Identity_element&oldid=626639404
https://github.com/Morwenn/cpp-fold
https://github.com/Morwenn/cpp-fold
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4072.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4072.html

	Introduction
	Motivation and Scope
	Design Decisions
	Wording
	Discussion
	Acknowledgements
	Bibliography

