
Document No: WG21 N4308
Date: 2014-11-12
References: ISO/IEC PDTS 19570
Reply To: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

National Body Comments

ISO/IEC PDTS 19570

 Technical Specification: C++ Extensions for Parallelism
Attached is WG21 N4308, National Body Comments for ISO/IEC PDTS 19570, Technical Specification
– C++ Extensions for Parallelism.

Document numbers referenced in the ballot comments are WG21 documents unless otherwise stated.

NB Comments: PDTS 19750, C++ Extensions for Parallelism Date:2014-11-11 Document: SC22 / WG21 N4308 Project: 19750

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

DE 1 ge The German NB is asking to consider N4167 before

finishing the TS. We also belief that it is worthwhile to
discuss in how far the goals of transform_reduce can
be achieved by a lazy evaluation of transform. More
generally, we wish a discussion whether more
functional implementations can avoid the need for
many new functions which combine existing ones.

JP 1 4 2.1 Example ed Typo for variable names in the example.
(not ‘vec’, but ‘v’)

(original)
std::sort(vec.begin(), vec.end());

(correct)
std::sort(v.begin(), v.end());

US 1 2.1 ge The stated scope for execution policy is a good
starting point but is insufficient for expressing parallel
performance considerations. An execution policy
should indicate how parallel execution is supported.

An object of an execution policy type indicates to an
algorithm how parallel execution is supported and
expresses the requirements on the element access
functions.

JP 2 2.2 te vector_execution_policy should be added.

Although parallel_execution_policy and
parallel_vector_execution_policy are defined, vector
only execution policy is not. It is important to control the
number of threads, especially for the server side
programming. It allows the execution of element access
functions to be interleaved on a single thread.

Add vector_execution_policy to header
<experimental/execution_policy> and new
subclause for it.

CH 1 2.3 3 Te Implementations should be allowed to add
experimental execution policies, especially for
executors

Replace paragraph 3 by the original wording. The
effect of specializing its execution policy for a type
which is not defined by library is unspecified (Note:
This provision reserves the privilege of creating
non-standard execution policies to the library
implementation.

US 2 3.1 2 te Requiring *all* exceptions thrown during
invocations of element access functions to be
captured is likely to impose severe scalability
limitations.

The initial list of uncaught exceptions thrown during
the invocations of element access functions shall
be contained in the exception_list. The size of this
list may be bounded.

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 3

NB Comments: PDTS 19750, C++ Extensions for Parallelism Date:2014-11-11 Document: SC22 / WG21 N4308 Project: 19750

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

JP 3 11 4.1.2 Paragraph 4 te In the paragraph, only the conditions where standard

library function is vectorizaion-unsafe are specified. But
it is not clear. The specification should explicitly state
which standard library functions are vectorizaion-safe.

Add a list of vectorization-safe standard library
functions.

US 3 4.1.2 3 te The specification should make it clearer that
element access functions and the like do not
visibly interrupt other user-visible threads. For
example, an element access function may not run
between a system call that sets errno and the
examination of errno on a user-created thread.

This may require the specification to introduce
some additional terminology.

US 4 4.4.2, 4.4.3 ge In addition, reduce and exclusive scan algorithms
need ‘function’ versions similar to for_each. Each
invocation of an element function shall produce a
contribution for the reduce or exclusive scan.
This is an important pattern for parallel
algorithms.

template< class InputIterator, class T, class
BinaryOperation, class Function>
T reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op, Function f);

template<class InputIterator, class OutputIterator,
class T, class BinaryOperation, class Function>
OutputIterator exclusive_scan(InputIterator first,
InputIterator last, OutputIterator result, T init,
BinaryOperation binary_op, Function f);

JP 4 4.4.2-4.4.4 te In each subclause, prototypes for reduce,
exclusive_scan and inclusive_scan don’t have an
argument for execution policy.

Add an argument for the execution policy as
suggested below.

(original)
template<class InputIterator>
typename iterator_traits<InputIterator>::value_type
reduce(InputIterator first, InputIterator last);

(suggested)
template<class ExecutionPolicy, class
InputIterator>
typename iterator_traits<InputIterator>::value_type
reduce(ExecutionPolicy&& exec, InputIterator first,
InputIterator last);

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 3

NB Comments: PDTS 19750, C++ Extensions for Parallelism Date:2014-11-11 Document: SC22 / WG21 N4308 Project: 19750

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 3

