Defaulted Comparison Using Reflection

Doc No: N4239

Project: Programming Language C++ - Evolution / SG7 Reflection

Authors: Andrew Tomazos <andrewtomazos@gmail.com>.
Michael Spertus <mike_spertus@symantec.com>

Date: 2014-10-12

Summary

N4114, N4175, and N4176 propose extending the core language to provide defaulted comparison
operators. While we would like to make it simple to generate defaulted comparison operators,

we propose achieving this using compile-time reflection, which we illustrate by leveraging the
reflection type traits proposed in N4113.

Why Use Reflection?

We recommend the use of reflection for several reasons

e One of the primary benefits of reflection would be to avoid littering the language with a lot
of special purpose core language extensions. If reflection renders such an extension
unnecessary, it is preferable in our mind to avoid it.

e N4175 can be implemented using reflection with (virtually) no special-purpose core
language changes.'

e Why stop at comparisons? How about adding core language extensions for automatically
generating augmented assignments types that define arithmetic operators, hashes, etc. If
we could consistently handle all such cases with reflection, we believe it is simpler to do
SO.

e As the discussion in Rapperswil and the subsequent long reflector indicate, it is not
uncontroversial what the best default behavior. For example, in the case of non-regular
types. By having a “library” based approach, we can avoid hardwiring in a single default.
In fact, we (or 3rd-party libraries like Boost, etc.) would not be restricted to a single
default if it proves useful. For example, it would be easy to add a different treatment of
mutable types as an add-on library without requiring further changes to the core
language.

Usage

We define a type trait generate comparisons<T> that indicates whether missing
comparisons should be automatically generated for that type. We propose two alternative
definitions for this trait.

' Not counting a reflection facility(!), which is of course a general-purpose core language facility targeted at a
broad range of use-cases (N3492)


mailto:andrewtomazos@gmail.com
mailto:mike_spertus@symantec.com

Option 1: The approach of N4175, which generates default comparison operators for most
classes with no special steps required by the programmer.

Option 2: An interface where the programmer can explicitly indicate that types have default
comparison functions.

Automatic generation of default comparators (N4175-compatible)

The unspecialized version of generate comparisons<T> is always true. This implements

an interface very close to that of N4175, which tries to always provide default comparison
operators as needed. There is, however, an advantage to using a type trait to control generation
of comparators. In N4175, every time a programmer wants to suppress the generation of
comparators (IOW, create a type that behaves like current C++14 types), they need to =delete
six operators, which may be regarded as an excessively intrusive requirement for adapting code
to a breaking change.

However, generate comparisons<T> allows them to revert the type to C++14 semantics
with a single specialization (or even a partial specialization to handle a slew of types).

Explicit generation of default comparators

Other proposals, like N4114 and those rejected in N4175, avoid a breaking change by making the
programmer explicitly request the generation of default comparisons. This case is provided
simply by having generate comparisons<T> default to false unless T inherits from a

with default comparisons class:

struct MyClass : with default comparisons { /* ... */ };

This is straightforward to do, but as Bjarne Stroustrup has pointed out, it can be intrusive. For
example, it cannot be used to generate default operators for C-style structs. However, these
cases can still be handled readily by simply specializing the trait:

template<> struct generate comparison<CStruct> : public true type ({};

Implementation

We provide implementations of the standard operators in terms of a in terms of one subfunction
called default tie:

template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator==(const C& a, const C& b) { return default tie(a) == default tie(b); }

template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator!=(const C& a, const C& b) { return default tie(a) != default tie(b); }



template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator<(const C& a, const C& b) { return default_tie(a) < default_tie(b); }

template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator>(const C& a, const C& b) { return default tie(a) > default tie(b); }

template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator<=(const C& a, const C& b) { return default tie(a) <= default tie(b); }

template<class C, class=typename enable if<generate comparisons<C>::value>::type>
bool operator>=(const C& a, const C& b) { return default_tie(a) >= default_tie(b); }

default tie(x) creates a std: :tie of references to the member subobjects of x. The six
comparisons then effectively delegate to the std: : tuple class to do a lexicographical
comparison of these sequences. The implementation of default tie will be given below.

Notes

e N4175 suggests forbidding comparisons between types that inherit from each other. This
is a general core language improvement that we approve of to close a longstanding hole
in the language.

e We concur with the recommendations of N4175 on the semantics and constructibility of
comparisons (Requirements on members, mutability, etc.)

e Since private members need to participate in the comparison, this assumes that
reflection can access private members for these kinds of uses. Since this is also a
requirement for other core reflection use cases like serialization and std::hash generation
(see N3492), we think it is safe to assume that any compile-time reflection system will
have some mechanism to enable this.

A remaining challenge

All of the proposals for defaulting operators have some tradeoffs. The ugly part of this proposal is
making sure that the operators are found by lookup. First, if no header is included (which may
happen in the N4175 compatible version), the operators won’t be found. Also, if they are in
namespace std, ADL won't find them for user-defined types. We would like to discuss the best
way to handle this in Urbana. At the worst, even putting these in the default namespace scope
still seems to us less intrusive than putting hard-wired implementations into the core language
(which also would effectively be in default namespace scope).

Implementation of default tie
This implementation uses the reflection traits from N4113

template<class C>
auto default tie(const C& x)

{



constexpr size t n = std::class member::list size v<C>;

return default tie impl(x, std::make index sequence<n>());

It gets the number of member subobjects (n) and then passes a std: : index sequence of
appropriate size to default tie impl that does the actual work:

template<class C, size t... i>
auto default tie impl (const C& x, std::index sequence<i...>)
{

static assert (check default constraints<C, i...>(),

"default tie impl: has base classes or private members");

return std::tie(x.*std::class member::pointer v<C, i>...);

To keep the demo simple we are not using std::base_class to also include base class
subobjects in the comparison (although this can easily be done too). Also to demonstrate
access control we are (statically) requiring that the input class C only has public members.
These two constraints are implemented with the above static assert to the below
constexpr function check default constraints:

template<class C, size t... i>
constexpr bool check_default_constraints()
{
// check has no base classes
if (std::base class::1list size v<C> > 0)
return false;

// check members are all public
for (auto access level : { std::class member::access level v<C,i>... })
if (access level != std::public_access)
return false;

return true;

The real work is done by the expression:
std::tie(x.*std::class member::pointer v<C, i>...)

which applies each index to std: :class member::pointer, to create a pointer-to-member
for each member, then uses it to create an Ivalue to the member subobject against the input x,
and then pack expands these Ivalues into the arguments to std::tie. The resultis then a

std: : tuple of references to the member subobjects.



References

N3492 Use cases for compile-time reflection (rev 2), Spertus

N4113 Reflection Type Traits For Classes, Unions and Enumerations, Tomazos / Kaeser
N4114 Defaulted Comparison Operators, Smolsky

N4175 Default Comparisons, Stroustrup

N4176 Thoughts about comparisons, Stroustrup



