
Document Number: N4186

Date: 2014-10-10

Project: Programming Language C++, Evolution Working Group

Reply-to: Matthias Kretz <kretz@compeng.uni-frankfurt.de>,
Jens Maurer <Jens.Maurer@gmx.net>

Supporting Custom Diagnostics and
SFINAE

ABSTRACT
Use of static_assert in the body of a function will not lead to a
substitution failure in template instantiation, thus making it impossi-
ble to create a trait that can distinguish between the intended and
unintended use of the function. This paper discusses the current sit-
uation and possible solutions to allow custom diagnostics while at the
same time enabling traits to test for usability of a function. The sug-
gestion of this paper is to extend the syntax of deleted functions to
allow custom diagnostics.

CONTENTS

1 Problem 1
2 Possible Solutions 2
3 Evaluation 4
A Acknowledgements 5
B References 5

N4186 1 Problem 1

1 class simd_float;
2 template <typename T> simd_float operator+(simd_float, T) {
3 static_assert(has_compatible_vector_size<simd_float, T>::value,
4 "Incompatible operands: the SIMD register sizes for "
5 "both operands must be equal on all possible target "
6 "platforms to ensure portable code. Use an explicit "
7 "type conversion to make the code portable.");
8 return ...;
9 }

Listing 1: Example usage of static_assert for a more informative
error message.

1 template <typename T, typename U,
2 typename = decltype(std::declval<T>() + std::declval<U>())>
3 std::true_type test(int);
4 template <typename T, typename U> std::false_type test(...);
5 template <typename T, typename U = T>
6 struct has_addition_operator : public decltype(test<T, U>(1)) {};

Listing 2: A type trait that checks for the existence of opera-
tor+(T, U) .

1 PROBLEM

Static assertions are a very useful tool to improve error messages if
a library interface is used incorrectly. Consider the addition operator
in Listing 1.

This has the following effects:

1. operator+ is a viable function for portable and unportable
uses of the addition operator.

2. The program is ill-formed if an unportable type combination is
used.

3. The compiler will output the second argument to the static_-
assert as custom diagnostic output if an unportable type com-
bination is used.

4. A SFINAE (or concept) check for the usability of the addition
operator for an unportable type combination is impossible to
implement.

The has_addition_operator trait in Listing 2 will not tell whether
a call to operator+(T, U) leads to a failed static assertion. This
depends on the rules of substitution failure: The expression de-
cltype(std::declval<T>() + std::declval<U>())> yields
a valid type even if has_compatible_vector_size<simd_float,

N4186 2 Possible Solutions 2

1 template <typename T>
2 enable_if_t<has_compatible_vector_size<simd_float, T>::value,
3 simd_float>
4 operator+(simd_float, T);
5 template <typename T>
6 enable_if_t<!has_compatible_vector_size<simd_float, T>::value,
7 simd_float>
8 operator+(simd_float, T) = delete;

Listing 3: Using a deleted function as an alternative implementation
to Listing 1.

T>::value is false .1 The substitution rules do not depend on
whether a static assertion fails on instantiation of a template func-
tion. They do depend on whether the (viable) function is accessible
(public vs. private) or deleted, though. Thus, the has_addi-
tion_operator trait will tell whether an addition operator is inac-
cessible or deleted.

Listing 3 shows an implementation of operator+ that solves the
SFINAE issue of Listing 1 but at the cost of losing custom diagnostics
output. The compiler has no idea why the library developer decided
to declare the function as deleted. Thus, all it can do is tell that a
deleted function was used. This tells a user of the library that either
the library developer made a mistake or it was really intended that
this overload is forbidden.

There is no way in current C++ to declare a function in such a way
that all four items are satisfied:

1. viable for incorrect use

2. ill-formed for incorrect use

3. custom diagnostics output for incorrect use

4. SFINAE or Concepts can check for usability, not only viability

The Custom diagnostics and SFINAE features are mutually exclusive.

2 POSSIBLE SOLUTIONS

Approaches:

1. Introduce a new type trait (which requires compiler support)
that can detect whether a given expression fails a static asser-
tion.

1 It would be possible to modify Listing 1 such that the return type is invalid, but
then the function would not be viable for unportable type combinations and the
static_assert would never fail…

N4186 2 Possible Solutions 3

2. Extend concepts to do “negative matching” to enable customized
diagnostics. Thus, a call to simd_float + double would
match the second overload in Listing 4 as best viable function
and make such a program ill-formed with the string after er-
ror used for diagnostics. In a template parameter substitution
this would lead to a failure and thus enable has_addition_-
operator to check for usability of the addition operator.

1 template <typename T>
2 requires has_compatible_vector_size<simd_float, T>::value
3 simd_float operator+(simd_float, T);
4 template <typename T>
5 requires !has_compatible_vector_size<simd_float, T>::value
6 error "<how to use + correctly>"
7 simd_float operator+(simd_float, T);

Listing 4: Notion of “negative matching” as an extension to concepts.

3. Introduce an additional check at the end of overload resolution
[1, §13.3 over.match], in the same spirit as the check for acces-
sibility:

§13.3 [over.match]
If a best viable function exists and is unique, overload resolution succeeds and produces it as the
result. Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution
succeeds, and the best viable function is not accessible (Clause 11) in the context in which it is used
or template instantiation would lead to a failed static_assert, the program is ill-formed.

The intention is to trigger a substitution failure when a static_-
assert would fail and thus enable SFINAE.

4. Extend the delete expression for deleted functions [1, §8.4.3
dcl.fct.def.delete] to accept an optional string argument that
will be used for diagnostics output.

§8.4.1 [dcl.fct.def.general]
Function definitions have the form
function-definition:

attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
function-body:

ctor-initializeropt compound-statement
function-try-block
deleted-definition
= default ;
= delete ;

deleted-definition:
= delete (string-literal) ;
= delete ;

N4186 3 Evaluation 4

1 template <typename T>
2 enable_if_t<!has_compatible_vector_size<simd_float, T>::value,
3 simd_float>
4 operator+(simd_float, T) =
5 delete ("Incompatible operands: the SIMD register sizes for "
6 "both operands must be equal on all possible target "
7 "platforms to ensure portable code. Use an explicit "
8 "type conversion to make the code portable.");

Listing 5: Providing custom diagnostics to a deleted function.

§8.4.3 [dcl.fct.def.delete]
A function definition of the form:
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt = delete ;

deleted-definition
is called a deleted definition. A function with a deleted definition is also called a deleted function.

A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed,
and the resulting diagnostic message (1.4) shall include the text of the string-literal, if one is given,
except that characters not in the basic source character set (2.3) are not required to appear in the
diagnostic message. [Note: This includes calling the function implicitly or explicitly and forming a
pointer or pointer-to-member to the function. It applies even for references in expressions that are not
potentially-evaluated. If a function is overloaded, it is referenced only if the function is selected by
overload resolution. — end note]

With this solution the deleted function in Listing 3 can be ex-
tended as shown in Listing 5.

3 EVALUATION

Approaches 1 and 3 require instantiation of the constant part of the
function body to evaluate the static_assert during overload res-
olution, before actually selecting the function. This seems novel ter-
ritory for such a small feature.

Similarly, approach 2 requires extensions to the concepts design,
which is currently not even a working draft for a Technical Specifica-
tion.

Approach 4 can be implemented as a fairly small extension to the
current check whether a function is deleted at the end of overload res-
olution. The issue of integrating string-literals from program source
code to diagnostic compiler output was already solved for static_-
assert .

The recommendation is to proceed with approach 4.

N4186 A Acknowledgements 5

A ACKNOWLEDGEMENTS

• This work was supported by GSI Helmholtzzentrum für Schwe-
rionenforschung and the Hessian LOEWE initiative through the
Helmholtz International Center for FAIR (HIC for FAIR).

B REFERENCES

[1] Stefanus Du Toit, ed. N3936: Working Draft, Standard for Program-
ming Language C++. ISO/IEC C++ Standards Committee Paper,
2014. URL http://www.open-std.org/jtc1/sc22/wg21/
prot/14882fdis/n3936.pdf .

http://www.open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3936.pdf
http://www.open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3936.pdf

	1 Problem
	2 Possible Solutions
	3 Evaluation
	A Acknowledgements
	B References

