
Contiguous Iterators: Pointer Conversion & Type Trait !
Document number: N4183
Date: 2014-10-10
Project: Programming Language C++, Library Evolution Working Group
Replaces: n3884: Contiguous Iterators: A Refinement of Random Access Iterators
Reply-to: Nevin “☺” Liber mailto:nliber@drw.com !
Introduction !
This is a proposal to: !
• Add a mechanism for converting a contiguous iterator to a pointer !
• A type trait for contiguous iterators !
It builds upon the discussion in Issaquah on the previous version of this paper (n3884) and is dependent on
n4132 Contiguous Iterators by Jens Maurer. !
Changes from n3884: !
N4132 covers the wording changes for the contiguous data structures (basic_string, array, vector and
valarray) in the standard, so those wording changes are removed from this proposal, greatly simplifying it
in the process. !
While contiguous iterators are a refinement of random access iterators, LEWG was split on whether or not
it would break too much code to derive an contiguous_iterator_tag from random_access_iterator_tag and
change existing iterator_traits to use that tag. This is because some code in the wild assumes that
random_access_iterator_tag is at the bottom of the hierarchy and checks for that exact tag instead of doing
tag dispatching via overloading. Having given this a bit of thought, I agree that potential code breakage is
too much. To avoid this problem, a new, independent type trait is being proposed. !
The preferred mechanism for a std::pointer_from(i) to convert a contiguous iterator into a pointer (without
requiring any external information, such as the container it comes from) is to use ADL to perform an
unqualified call to do_pointer_from(i) (names still to be bike shedded, of course). !
Converting a contiguous iterator to a raw pointer via do_pointer_from()/std::pointer_from() !
It is highly desirable to be able to convert a contiguous iterator to a raw pointer without requiring any
external information (such as the container it comes from). Some use cases: !

• Passing buffers to C APIs.
• Algorithm improvements; e.g., memcpy a contiguous POD.
• Classes such as string_view and array_view can be constructed from a contiguous range.
• The Boost.Container library uses this functionality (the function is iterator_to_raw_pointer,

although that may not be limited to contiguous iterators) !
We need a function because the construct std::addressof(*i) is only valid if i is dereferenceable, and we
wish to convert non-dereferenceable end-of-range iterators to raw pointers as well. When such a function
is not provided, we have seen people use the construct &*i, even though that results in undefined behavior
for end-of-range iterators. !
Because pointers themselves can be contiguous iterators, it would be impossible to require that such a
conversion be done via a member function. !!

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884
mailto:nliber@drw.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884
http://isocpp.org/files/papers/n4132.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884
http://isocpp.org/files/papers/n4132.html
http://www.boost.org/doc/libs/1_56_0/doc/html/container.html
http://www.boost.org/doc/libs/develop/boost/container/detail/utilities.hpp

The proposed interface is a free function std::pointer_from which uses argument dependent lookup to call
an unqualified do_pointer_from for conversion from an iterator to a pointer. This gives container
implementers the most flexibility. !
A potential downside to this method is that it may not be easy (or possible) to extend pointer_from() to
other types (non-contiguous iterators, smart pointers, etc.). iterator_to_raw_pointer() in Boost.Container
shows that such a function can be useful to other iterators. There is also boost::get_pointer(), which shows
that such a function can be useful to things like smart pointers. !
Add the following to [iterator.synopsis]: !
// contiguous iterators:
template<class T>
constexpr T* do_pointer_from(T* p) noexcept; !
template<class ContiguousIterator>
constexpr
auto pointer_from(ContiguousIterator i)
noexcept(noexcept(do_pointer_from(i)))
-> decltype(do_pointer_from(i)); !
Add the following to [contiguous.iterators]: !
Table	 1	 -‐	 Contiguous	 iterator	 requirements	 (in	 addition	 to	 random	 access	 iterator)	

!
Contiguous iterator operations [contiguous.iterator.operations] !
template<class T>
constexpr T* do_pointer_from(T* p) noexcept; !
Effects: returns p. !
template<class ContiguousIterator>
constexpr
auto pointer_from(ContiguousIterator i)
noexcept(noexcept(do_pointer_from(i)))
-> decltype(do_pointer_from(i)); !

Expression Return Type Operational semantics Assertion/note pre-post-
condition

do_pointer_from(r
)

T* If r is dereferenceable,
std::addressof(*r).
If the expression r-1 is
v a l i d ,
std::addressof(*(r
-1))+1.

do_pointer_from is
looked up in the associated
n a m e s p a c e
[bas ic . lookup .a rgdep] .
do_pointer_from(r)
returns a valid pointer.

a == b pre: (a,b) is in the
domain of ==.
do_pointer_from(a)
= =
do_pointer_from(b)
.

http://www.boost.org/doc/libs/develop/boost/container/detail/utilities.hpp
http://www.boost.org/doc/libs/1_56_0/doc/html/container.html
http://www.boost.org/doc/libs/1_56_0/boost/get_pointer.hpp

Effects: Returns a valid pointer. If i is dereferenceable, returns std::addressof(*i). If the
expression i-1 is valid, returns std::addressof(*(i-1))+1. [Note: For a valid iterator range
[a,b) wi th dereferenceable a , the cor responding range denoted by poin ters i s
[pointer_from(*a),pointer_from(*a) + (b-a)); b might not be dereferenceable. – end
note] !
Drafting note: Please check that the above wording is both correct and sufficient to cover dereferenceable
iterators, end-of-range iterators and empty-range iterators. !
Add the following to Annex C (informative) Compatibility: !
Code which defines the function do_pointer_from(T) in their own namespace may cause breakage. !
Known open issues: !

1. Is wording needed for the contiguous containers (array, basic_string, vector, valarray)? I believe
the contiguous iterator requirements section is sufficient. However, if it is not, such wording
would have to take into account that these containers could use raw pointers for iterators or share
iterators across container types.

2. Bike shedding for std::pointer_from and do_pointer_from. Previous suggestions: !

!!

!
Alternate to ADL !
Jens Maurer suggests we consider an alternate to ADL lookup; namely, add pointer_from as a static
member function in the iterator_traits class: I appreciate the extensibility and configurability aspects of it,
and I certainly value the flexibility in something like hash_append(), but it seems somewhat over-the-top to
use this for rather arcane functionality such as pointer_from(). Can we put that as a static member into
std::iterator_traits<> instead? !

Call Define

std::pointer_from do_pointer_from

std::adl_pointer_from pointer_from

std::pointer_from std_do_pointer_from

std::get_pointer prefixed

std::as_pointer

std::pointer_from_iterator

std::to_pointer

Prefixed for ADL

do_

std_do_

adl_

customized_

custom_

My position is that I am less concerned with the actual mechanism as long as such a mechanism exists. !
The plus side is that this would be a backwards compatible change to iterator_traits; it doesn’t interfere
with users that have already specialized it for their own iterators. The main downside is that if someone
adds this function for a non-contiguous iterator, any type trait for contiguous iterator based on its presence/
absence would be incorrect. !
contiguous_iterator_tag !
Jens Maurer would like us to revisit publicly deriving a contiguous_iterator_tag from
random_access_iterator_tag and updating the appropriate sections of the standard to use it. Do we ever
expect to have any that are not random-access? If not, I'd really like to extend the iterator tag hierarchy. It
seems the code breakage will be loud (not silent),so people will notice and fix their code when moving to C
++1y. We'll be stuck with any hack we apply here until the end of time. !
As I wrote in n3884: Given that contiguous iterators meet all the requirements of random access iterators,
it made sense to publicly derive contiguous_iterator_tag from random_access_iterator_tag. This has the
added benefit for those people who use tag dispatching on iterator categories that their code still “just
works”. Note: this may break or produce sub-optimal performance for existing code that specifically looks
for a random_access_iterator_tag (such as in a template specialization), but the Standard has been quite
clear that the proper way to use these is by tag dispatching (n3797 24.4.3 [std.iterator.tags] for examples
on how to do so), so such breakage in practice should be minimal. !
It has since been brought up that iterator wrappers (such as reverse_iterator, skipping iterators, etc.) tend to
just copy verbatim the iterator category of the underlying iterator. That code would break, and perhaps not
noisily at compile time. While we can easily fix the ones in the standard (n3884 proposed to do that for
std::reverse_iterator, for instance), these wrappers appear in existing code bases (such as
boost::reverse_iterator) and the risk of breakage is too great. !
Also, there has been talk about revamping the iterator categories (such as suggested in n1550), and if that
comes to pass, would likely be a better time to introduce a contiguous_traversal_tag. !
Type trait !
There are three design choices:
• Make it like other type traits such as is_pointer, where it has exactly one responsibility.
• Make it a superset/replacement of the current iterator_traits, and either refine the iterator_category there
or add a new type/value to indicate contiguousness. The big disadvantage to this is that users have to
specialize two separate classes in two different ways (making it error-prone) when they add their own
contiguous containers, as well as error-prone in usage (because the two classes would be subtly different)
 • Do something like allocator_traits that can wrap an iterator. !
Because of the error-proneness of the second option, the author prefers the first option and will explore
that. !
is_contiguous_iterator trait: !
Add the following to [meta.type.synop]: !
// contiguous iterator properties:
template <class T> struct is_contiguous_iterator; !
Add the following to Table 49 – Type property predicates: !
Template Condition Preconditions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884.pdf
http://www.boost.org/doc/libs/1_56_0/libs/iterator/doc/reverse_iterator.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm

!
Drafting note: is the above wording sufficient, given the requiresments on contiguous iterators? !
Open issues: !

1. Does is_contiguous_iterator belong in <type_traits>?
2. Does is_contiguous_iterator belong in <iterator>?
3. Should is_contiguous_iterator be available when either <type_traits> or <iterator> is included?
4. If pointer_from() is a static member function, does it belong in this type trait instead of and/or in

addition to iterator_traits?
5. Bike shedding is_contiguous_iterator. !!

Impact on the Standard !
All of the text is a pure addition to the standard. The only caveat is if we use ADL we are reserving the
name do_pointer_from in user namespaces. !
Sample implementation: !
namespace std
{
 template<typename T>
 constexpr T* do_pointer_from(T* p) noexcept { return p; } !
 template<typename ContiguousIterator>
 constexpr
 auto pointer_from(ContiguousIterator i)
 noexcept(noexcept(do_pointer_from(i)))
 -> decltype(do_pointer_from(i)) // necessary for SFINAE
 { return do_pointer_from(i); }

 namespace detail
 {
 template<typename, typename = void>
 struct contiguous_iterator_impl
 : std::false_type
 {};

 // Uses void_t from n3911
 template<typename I>
 struct contiguous_iterator_impl<I,
 std::void_t<decltype(std::pointer_from(std::declval<I>()))>>
 : std::true_type
 {};
 } // detail namespace

 template<typename I>
 struct is_contiguous_iterator = typename detail::contiguous_iterator_impl<I>::type;

} // std namespace !
Acknowledgements !
Thanks to Beman Dawes for suggesting that I propose this. !
Thanks to Jeffrey Yasskin for both string_view and suggesting that contiguous iterators be convertible to
pointers. !

template <class T>
struct
is_contiguous_iterator
;

T is a contiguous iterator

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf

Thanks to Stephan T. Lavavej for pushing the ADL solution for converting pointers. !
Special thanks to Tom Rodgers for presenting n3884 in Issaquah. !
Thanks to Jens Maurer for n4132, which vastly simplifies this paper, as well as his many comments. !
Thanks to Ion Gaztañaga for pointing out that the Boost.Container library has iterator_to_raw_pointer(). !
Thanks to Walter Brown for n3911, as I use it in my sample implementation. !
Thanks to Eric Niebler, Dave Abrahams, Gabriel Dos Reis, Howard Hinnant, P.J. Plauger, Sean Parent,
Andrew Koenig, Bjarne Stroustrup, Nikolay Ivchenkov, Herb Sutter, Matt Austern, Tony Van Eerd, Mathias
Gaunard, Olaf van der Spek, Anthony Syzdek, Matt Godbolt, Marc Glisse, Jonathan Wakely and Richard
Smith for discussions on contiguous iterators on various mailing lists. (If I missed anyone, please let me
know.) !
Thank them / blame me for things you like and don’t like, respectively. !
References !!
N3884, Contiguous Iterators: A Refinement of Random Access Iterators, Nevin “☺” Liber !
N4132, Contiguous Iterators, Jens Maurer !
N1550, New Iterator Concepts, David Abrahams, Jeremy Siek, Thomas Witt !
N3911, TransformationTrait Alias void_t, Walter E. Brown !
N3936, Working Draft, Standard for Programming Language C++ !
N4081, Working Draft, C++ Extensions for Library Fundamentals !
N4087, Multidimensional bounds, index and array_view revision 3, Łukasz Mendakiewicz & Herb Sutter !
Boost.Container, iterator_to_raw_pointer(), Ion Gaztañaga !
Boost.Iterator, boost::reverse_iterator, David Abrahams, Jeremy Siek, Thomas Witt !
boost::get_pointer(), Peter Dimov & David Abrahams

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884.pdf
http://isocpp.org/files/papers/n4132.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3884.pdf
http://isocpp.org/files/papers/n4132.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3936.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4081.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4087.html
http://www.boost.org/doc/libs/1_56_0/doc/html/container.html
http://www.boost.org/doc/libs/develop/boost/container/detail/utilities.hpp
http://www.boost.org/doc/libs/1_56_0/libs/iterator/doc/index.html
http://www.boost.org/doc/libs/1_56_0/libs/iterator/doc/reverse_iterator.html
http://www.boost.org/doc/libs/1_56_0/boost/get_pointer.hpp

