
Doc. No.: N4157
Date: 2014-10-02
Author: Arch D. Robison, Jared Hoberock, Artur Laksberg
Reply to: 〈arch.robison@intel.com〉

Relaxing Packaging Rules for Exceptions
Thrown by Parallel Algorithms

Contents

1 Abstract 1

2 Introduction 1

3 Survey of Current Solutions 2

4 Does the Current Rule Really Simplify Exception Handling? 3

5 Proposal 5

1 Abstract

If an algorithm invocation throws only a single exception, then it should be
allowed to propagate the singleton exception directly instead of returning it
wrapped in an exception list.

2 Introduction

Experience with implementing N4105 has revealed that the obvious way to
implement some of the functionality does not work because of a requirement
that exceptions be packaged in an exception list (except for bad alloc).
This requirement turns out to overly burden implementers with little gain for
users.

The first author discovered this issue in his own implementation, and then
found out that the two other known (and independent) implementations of
N4105 (by NVIDiA and Microsoft) do not implement the requirement being
questioned. This paper reviews implications of the requirement, why there is
little gain for users, and relaxing the rule.

N4157 2

To reduce distraction, this paper assumes suitable using declarations make
explicit namespace qualifications unnecessary.

A motivating example is the following attempt to implement none_of:

template <class ExecutionPolicy, class InputIterator, class Predicate>

bool none_of(ExecutionPolicy&& exec,

InputIterator first, InputIterator last, Predicate pred)

{

return !any_of(exec, first,last, pred);

}

This implementation is concise, but violates the aforementioned requirement if
the copy constructor for any of the arguments to any_of throw an exception.

3 Survey of Current Solutions

There are solutions for dealing with the problem. The objection is not that
they are unworkable, but that they involve extra complexity with little gain for
users. Furthermore, extending this exception handling convention to user code
will burden them with the same awkwardness.

Implementers could avoid using any_of to implement none_of. For example,
they are free to create a private any_of_ref that takes reference arguments and
contains a try block that can catch and wrap exceptions. Then any_of and
none_of can be implemented on top of any_of_ref.

But we’re not done yet, because it would be nice to be able to implement
all_of as:

template <class ExecutionPolicy, class InputIterator, class Predicate>

bool all_of(ExecutionPolicy&& exec,

InputIterator first, InputIterator last, Predicate pred)

{

return any_of_ref(first,last, not1<Predicate>(pred));

}

Alas this implementation does not conform to N4105 if the copy-constructor for
Predicate throws an exception. A possible solution is to avoid using not1, and
instead augment any_of_ref with a boolean template parameter that indicates
whether it should negate the predicate.

Another solution on the part of implementers is to create a wrapper for
capturing and packaging exceptions. For example, implementers could write
something like:

template <class ExecutionPolicy, class InputIterator, class Predicate>

bool none_of(ExecutionPolicy&& exec,

N4157 3

InputIterator first, InputIterator last, Predicate pred)

{

try_invoke([&]{return !std::any_of(policy,first,last,pred);})

}

where try_invoke is something like:

template<typename F>

void try_invoke(F f) {

try {

f();

} catch(...) {

...wrap current exception in an exception list...
}

}

This solution meets the requirements of N4105. But suppose f() throws an
exception_list? Should try_invoke wrap it in another exception_list,
or not? Either choice is correct, but either seems like gratuitous additional
wrapping or ad-hoc flattening.

The point is not that the problem is unsolvable, merely that it creates a
composition problem that seems burdensome, and as the next section shows,
gains no simplicity for users. Furthermore, this composition burden extends
to users who want to write their own algorithms and follow N4105’s rule for
reporting exceptions.

4 Does the Current Rule Really Simplify Ex-

ception Handling?

Let’s look back at the motivations for requiring that all exceptions be packaged
in an exception_list:

• The ability to report multiple exceptions.

• The ability to easily capture and decode that report.

The second point is the point of debate. At first glance, requiring all exceptions
be packaged in an exception_list would seem to simplify matters by provid-
ing a uniform form. However, the form is intrinsically recursive: some of the
exceptions therein may themselves be exception_list wrappers around more
exceptions. The only way to inspect all exceptions is a recursive walk. Here is
an example of such a walk that looks for range_error exceptions:

N4157 4

1 void walk1(const exception_list& x) {

2 for (auto e: x)

3 try {

4 rethrow_exception(e);

5 } catch (const range_error& r) {

6 cout << "found a range error\n";

7 } catch (const exception_list& y) {

8 walk1 (y);

9 }

10 }

11

12 bool example1(Iter first, Iter last, bool(*p)(const Foo&)) {

13 try {

14 return none_of(par, first, last, p);

15 } catch (const exception_list& x) {

16 walk1(x);

17 }

18 }

Listing 1: Processing catch(exception list)

Now suppose that a parallel algorithm were allowed to throw an unwrapped
exception if only one exception ocurred. A recursive walk is still required, but
is fundamentally no more complicated than Listing 1:

1 void walk2(const exception_ptr& e) {

2 try {

3 rethrow_exception(e);

4 } catch (const range_error& r) {

5 cout << "found a range error\n";

6 } catch (const exception_list& y) {

7 for (auto d: y)

8 walk2 (d);

9 }

10 }

11

12 bool example2(Iter first, Iter last, bool(*p)(const Foo&)) {

13 try {

14 return none_of(par, first, last, p);

15 } catch (...) {

16 walk2(current_exception());

17 }

18 }

Listing 2: Processing catch(...)

N4157 5

The difference is that it starts with an exception_ptr instead of an exception_list.
Other than that, it’s essentially the same logic rotated.

5 Proposal

Any future revision of N4105 should relax Section 3.1 paragraph 2 to permit
an implementation to throw an exception that is not an exception_list if
only one invocation of an element access function throws an exception. Here is
proposed rewording:

If the execution policy object is of type sequential_execution_policy
or parallel_execution_policy, the execution of the algorithm ter-
minates with an exception list exception. The exception shall be
an exception list containing all All uncaught exceptions thrown
during the invocations of element access functions, or optionally the
uncaught exception if there was only one shall be contained in the
exception list.

[Note: For example, the number of invocations of the user-provided
function object in for_each is unspecified. When for_each is exe-
cuted sequentially, if an exception list is thrown, it will contain a
single exception object. only one exception will be contained in the
exception list object. end note]

	Abstract
	Introduction
	Survey of Current Solutions
	Does the Current Rule Really Simplify Exception Handling?
	Proposal

