
Document No: WG21 N4146
Date: 2014-09-23
References: ISO/IEC DIS 14882 (Ed 4)
Reply To: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

Disposition of Comments

ISO/IEC DIS 14882

 C++ 2014

Attached is WG21 N4146, the Disposition of Comments for ISO/IEC DIS 14882, Draft Information
Standard ISO/IEC 14882:2014.

Document numbers referenced in the ballot comments are WG21 documents unless otherwise stated.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
01

 ed This DIS does not have Foreword. It should be
given before the first clause.

 To be fixed by ISO
secretariat

JP
02

 1.2 Paragraph 1 ed ISO/IEC 2382 - Vocabulary is listed in 1.2
Normative References, but it should be moved to
Bibliography. 2382 is not referred to in normative
part of this DIS.

 This is consistent with all
prior revisions of C++.
Terms defined in this
document are used
throughout the International
Standard.

JP
03

 2.14.2 Paragraph 0
(Syntax)

ge Current integer literal syntax allows single
quotation mark (') as a digit separator. In octal
integer literal, single quotation mark after prefix is
allowed. In other notations, single quotation
mark after prefix is not allowed. (e.g. 0'01 is well-
formed, but 0b'01 and 0x’01 are ill-formed.)
We think this asymmetry makes tools such as
automatic code generator complicated.

Allow digit separator after binary and hexadecimal
prefix, too. Or, Disallow it after octal prefix.

<not editorial>
Assigned as Core Issue
1947, for consideration in a
future revision to the
Standard. Out-of-scope for
this revision.

JP
04

 2.14.2 Table 6 ed In Table 6, at the header of column 3, the order of
type names of integer literals is not consistent,
where “Binary” is placed before “octal” and
“hexadecimal”, but at the other places, the order
is always decimal, octal, hexadecimal and then
binary, as in the syntax section.

Change to “Octal, hexadecimal, or binary literal” These lists should
consistently be in radix
order, that is, “binary, octal,
decimal, hexadecimal”. This
will be fixed in a future
revision of the C++
standard.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
05

 5.3.4 Paragraph
10

ed > The implementation may extend the allocation
of a new-expression e1
> to provide storage for a new-expression e2 if
the following would
> be true were the allocation not extended:

Is this sentence correct syntax? We are not sure
whether the list of the descriptions is "positive"
condition or "negative" condition. "Positive"
means that if the condition is satisfied, then the
allocation may extend. "Negative" means that if
the condition is satisfied, then the allocation does
not extend.

For example, the 4th description seems to be
"positive". But the description above the list of
conditions says that "if the following would be
true were the allocation *not* extended"

Make it correct and easy-to-understand
description.
Purely grammatically, “if the following would be
true were the allocation not extended” seems to
lack “is” before “not”.

Not a defect: the sentence
is establishing a
hypothetical, and is
grammatically correct. The
bulleted items are positive
statements within that
hypothetical.

JP
06

 7.1.5 Paragraph 8 ed By N3652, the statement "The class of which a
literal type (3.9)" remains, but it is removed in
DIS. Please check whether the removal is
intended or not.

If it is intended, we think that the following part of
the example should be removed because it is not
related to this clause in DIS.

 class debug_flag {
 public:
 explicit debug_flag(bool);
 constexpr bool is_on() const; // error:
debug_flag not
 // literal type
 private:
 bool flag;
 };

The removal is correct; the
sentence was removed by
CWG issue 1684.
The example is removed in
IS.

JP
07

 7.1.6.4 Paragraph 7 ge In the sentence, “When a variable…type of its
specifier”, we think specification for function
return type deduction is unclear, because the
term "initializer" is not directly related to return
statement.

 Change to: (e.g.)
the deduced return type is determined from the
type of expression specified for the return
statement.

This warrants further
investigation, but will not be
changed for the IS. This is
editorial issue #371.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
08

 20.9.5 Paragraph 7
to 12

ed All auto operator() lacks “constexpr”. 7 operator() returns x <= y.
 template <> struct equal_to<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) ==
std::forward<U>(u));
 typedef unspecified is_transparent;
 };
8 operator() returns std::forward<T>(t) ==
std::forward<U>(u).
 template <> struct not_equal_to<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) !=
std::forward<U>(u));
 typedef unspecified is_transparent;
 };
9 operator() returns std::forward<T>(t) !=
std::forward<U>(u).
 template <> struct greater<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) >
std::forward<U>(u));
 typedef unspecified is_transparent;
 };
10 operator() returns std::forward<T>(t) >
std::forward<U>(u).
 template <> struct less<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) <
std::forward<U>(u));

Missing edit from approved
paper. Fixed in IS.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 typedef unspecified is_transparent;
 };
11 operator() returns std::forward<T>(t) <
std::forward<U>(u).
 template <> struct greater_equal<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) >=
std::forward<U>(u));
 typedef unspecified is_transparent;
 };
12 operator() returns std::forward<T>(t) >=
std::forward<U>(u).
 template <> struct less_equal<void> {
 template <class T, class U> constexpr auto
operator()(T&& t, U&& u)
const
 -> decltype(std::forward<T>(t) <=
std::forward<U>(u));
 typedef unspecified is_transparent;
 };
13 operator() returns std::forward<T>(t) <=
std::forward<U>(u).

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
09

 20.9.6 Paragraph 1
to 3

ed "constexpr" specifier should be placed before
type specifier.

1 The library provides basic function object
classes for all of the logical operators in the
language (5.14, 5.15,
5.3.1).
 template <class T = void> struct logical_and {
 constexpr bool operator()(const T& x, const
T& y) const;
 typedef T first_argument_type;
 typedef T second_argument_type;
 typedef bool result_type;
 };
2 operator() returns x && y.
 template <class T = void> struct logical_or {
 constexpr bool operator()(const T& x, const
T& y) const;
 typedef T first_argument_type;
 typedef T second_argument_type;
 typedef bool result_type;
 };
3 operator() returns x || y.
 template <class T = void> struct logical_not {
 constexpr bool operator()(const T& x) const;
 typedef T argument_type;
 typedef bool result_type;
 };

Misapplied edit from
approved paper. Fixed in
IS.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
10

 23.3.2.1 Paragraph 3 ed In struct array definition, the member function,
data() lack “constexpr”.
It meets the requirements of constexpr function
as with other constexpr member functions.

constexpr const T * data() const noexcept; <not editorial>
Assigned to Core Issues list
for consideration in a future
revision to the Standard.
Not in scope for this
revision.

JP
11

 30.4.1.1 Paragraph 1 ge Following explanation of mutex types seems not
to correspond to shared timed mutex adopted to
this DIS where multiple threads can own single
shared mutex.

The mutex types supplied by the standard library
provide exclusive ownership semantics: only one
thread may own the mutex at a time.

The sentence should be removed or changed to
correct description.

This sentence is removed
in the IS. The normative
requirements are clearly
stated elsewhere.

JP
12

 30.4.1.4 Paragraph 2 ed The maximum number of threads is specified in
the following sentence:
 The maximum number of execution agents which
can share a shared lock on a single shared mutex
type is unspecified, but shall be at least 10000.
Is there any rationale about the number, 10000?
Alothough it is required, it seems better to move
such a kind of implementation limitation at
runtime to ‘Annex B: Implementation quantities' .

Move the sentence to Annex B.
In addition, it seems better to add any rationale
about the value.

<not editorial: Annex B is
non-normative, so the
proposed change would
have conformance impact>

JP
13

 30.4.1.4 Paragraph
5, 13, 19,
26, and so
on

ed Some semantics clauses, i.e. ‘Requires’, ‘Effects’,
or ‘Postcondition’, lack a "subject". To clarify
intent, it should be included in sentences.

Add a corresponding subject . Not a defect: while informal,
this is consistent with the
style used in the rest of the
standard, and adding a
leading “This function” to
each of these would not
improve clarity. This will be
fixed in a future revision of
the C++ standard.

Template for comments and secretariat observations Date: 2014-08-12 Document: ISO/IEC DIS 14882
(Ed4)

Project: 64029

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 7

ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP
14

 30.4.1.4.1 Paragraph 0
(definition)

ed Formatting for class shared_timed_mutex is not
compatible with others.
In addition, at lock() function line, there is a
comment, “//blocking”, but in the similar class,
timed_mutex, there’s no comment for lock()
function. They should be uniformed.

Remove a blank line under “namespace std{“.
Indent whole class definition by 2 columns.
Remove the comment at lock() and lock_shared().
(or add the same comment at timed_mutex::lock()
)

This will be fixed in a future
revision of the C++
standard.

JP
15

 30.4.1.4.1 Paragraph 0
(definition)

te The shared_timed_mutex class does not contain
'native_handle' for incorporating implementation
specific details which is contained in all other
mutex type. Is there any reason not to include
'native_handle' in shared_timed_mutex class?

Just confirmation. If intended, it’s ok. <not editorial>

JP
16

 30.4.1.4.1 Paragraph 3 ed The mixed condition of 3 clauses is ambiguous.
Possibly, ‘or’ should be added after the 2nd
clause.
Please note that there is a period at the end of
the original 2nd clause. It should be a comma.

The behavior of a program is undefined if:
 - it destroys a shared_timed_mutex object owned
by any thread,
 - a thread attempts to recursively gain any
ownership of a shared_timed_mutex, or
- a thread terminates while possessing any
ownership of a shared_timed_mutex.

This will be fixed in a future
revision of the C++
standard.

JP
17

 30.6.4 Paragraph 5 ed "and" after a sentence at the first dash (“- if the
return...”) remains.
In N3776, it is removed. Is it correct?

If not correct, remove the “and”. Not a defect: including
“and” or “or” at the end of
each list element is correct
and consistent with nearby
wording.

JP
18

 ed Hanging paragraphs can often be found in this
DIS.
ISO/IEC Directives do not allow hanging
paragraphs.

 This is a large-scale
reformatting of the
standard, and cannot be
accommodated within the
timeframe for C++14. It will
be fixed in a future revision
of the C++ standard.

