

N4130: Pad Thy Atomics
JF Bastien

Olivier Giroux

2014-09-01
jfb@google.com

ogiroux@nvidia.com

1. Introduction
This paper discusses multiple issues withatomicand proposes a few approaches to fix all of
the issues. No definite conclusion is reached: the authors hope to obtain guidance from SG1
at the upcoming Redmond meeting on alternatives marked with [TBD].

1.1. Background

1.1.1.Uninitialized State
LWG 2334: atomic's default constructor requires “uninitialized” state even for types with
non-trivial default-constructor. According to 29.6.5 [atomics.types.operations.req] p4:

A ::A () noexcept = default;

Effects: leaves the atomic object in an uninitialized state. [Note: These semantics
ensure compatibility with C. — end note]

The user-defined default constructor is currently never called. This requirement is for C
compatibility, but C++ types also currently fall under this requirement.
This led to a further discussion in the Rapperswil SG1 meeting aboutatomic<T>either being
POD even if Tis not POD, or not POD when Tis POD, both of which seem counter-intuitive.
This behavior is probably not portable.

1.1.2.Structs Comparing Equal
WG14 DR 431: atomic_compare_exchange: What does it mean to say twostructs compare
equal? The main concern is on comparing padding bit, whose value is unspecified, yet are
compared because comparison through atomic_compare_exchangeis done by memcpy. The
standard mentions that atomic_compare_exchange is used in a loop and will therefore
converge, but usage in a loop isn’t necessarily true for all valid uses. The same question
applies for unions in atomic, class-type is therefore used in this paper.
A sample problematic example:

struct C { char c; /* padding bits may live here */ int i; };

atomic<C> ac;

1.1.3. 1.1.3.C Compatibility
We want to keep compatibility with C. Specifically, ATOMIC_INIT should fall into this solution.
Note: default-initialization leaves padding unspecified, whereas zero-initialization sets
padding bits.

1

1.2. Objective
An ideal resolution makes atomicconstruction work in a non-surprising way while ensuring
that padding bits of class-types used atomically are always well-defined, making
compare-and-exchange operations with these types perform as best as the underlying ISA
can guarantee. No full solution is advocated for at the moment since the C compatibility
issue doesn’t seem to be resolvable without a change that involves more than just atomic,
and the value return issue doesn’t currently have a proposed solution.

2. Default Construction
The standard currently specifies atomic’s default constructor as:

atomic() noexcept = default;

Implementations of atomicwhich aren’t lock-free either use global locks partitioned on a
hash of the object’s address, or they add a lock to everyatomicobject which isn’t lock-free.
The lock is an implementation detail, but it isn’t specified as trivially constructible (case in
point: mutex isn’t trivially constructible).
This seems wrong because an implementation which uses a per-object lock which isn’t
trivially constructible makes the default constructor magically non-trivial even though it is
specified to be trivial. We could either [TBD]:

1. Specify that atomic always has a non-trivial default constructor.
2. Both:

○ Mandate that implementation-defined locks be trivially constructible to avoid
the magical behavior.

○ Specialize atomicfor class-types that aren’t trivially constructible, making
is_pod<atomic<T>> == is_pod<T>.

LWG 2334 proposes changing 29.6.5 [atomics.types.operations.req] p4 to default-initialize
the atomic object. To guarantee that padding bits are of known value it could [TBD]:

1. First zero-initialize (setting padding), then default-initialize atomic objects of
class-types.

2. Mandate that users memset(this, init_val, sizeof(*this)); in the default
constructor of class-types which they intend to use in atomics. This default
constructor will be invoked because of the proposed change. There should be notes
explaining the following (either here or closer to compare-and-exchange):

○ How users should use memsetin the default constructor to make padding bits
predictable.

○ Demonstrate that padding bits have known values when using a
compare-and-exchange loop which reloads the value.

3. Keep the behavior as it currently is, not call user-defined default constructors for
atomicobjects, and instead zero-initialize the entire object. In this case we should

2

add a non-normative note that a compiler should warn when their user-defined default
constructor won’t be called.

Note that the above proposal regarding atomicinstances of types with user-defined default
constructors has no impact on C compatibility.

3. Value-Initialization, atomic_init and Assignment
LWG 2334 proposes changing value-initialization (constexprA::A(Cdesired)noexcept;)
to direct-initialize the value referred to by the atomicobject with the value desired. This is
flawed for class-types, because Thas to be trivially-copyable and the defaulted copy
constructor only does member-wise copying. The same applies for atomic_initas well as
assignment (operator=). These three operations should instead be defined in terms of either
[TBD]:

1. memcpy.
2. obj2.store(obj1.load()).

Side-effect of note in this change:

This affects the active type of an atomicunionas implemented in some compilers,
and makes atomic<union T> behave differently from union T in these
implementations: type-punning ofatomic<unionT>works through value-initialization,
whereas non-atomicunionTcan’t use anything but the active type of the union
because most implementations don’t propagate type information across memcpy.
This behavior isn’t guaranteed by the standard.

union U { float f; uint32_t i; };

U u = { 1. };

atomic<U> au;

au.store(u);

cout << u.i << endl; // Undefined.

cout << au.load().i << endl; // Defined on most implementations.

4. Load and Store
Load and store operations on class-types should be specified to copy all padding bits
(through memcpy), this currently isn’t the case. The above proposal for value-initialization,
atomic_init and assignment relies on this change to load and store.

Is this acceptable? [TBD]

3

5. Compare and Exchange

5.1. Fixing Compare and Exchange
Compare-and-exchange is already defined in terms of memcmpandmemcpyin p23. Should this
be made clearer since it’s merely an example in a note [TBD]:

[Note: For example, the effect of atomic_compare_exchange_strong is
if (memcmp(object, expected, sizeof(*object)) == 0)

memcpy(object, &desired, sizeof(*object));

else

memcpy(expected, object, sizeof(*object));

— end note] [Example: the expected use of the compare-and-exchange operations is
as follows. The compare-and-exchange operations will update expected when
another iteration of the loop is needed.
expected = current.load();

do {

 desired = function(expected);

} while (!current.compare_exchange_weak(expected, desired));

— end example]

29.6.5 [atomics.types.operations.req] p26 has note:

[Note: The memcpyand memcmpsemantics of the compare-and-exchange operations
may result in failed comparisons for values that compare equal with operator==if
the underlying type has padding bits, trap bits, or alternate representations of the
same value. Thus, compare_exchange_strongshould be used with extreme care. On
the other hand, compare_exchange_weak should converge rapidly. — end note]

Should we remove it, and replace it with a note explaining how compare-and-exchange works
with padding bits (see the suggestion above for default construction)? [TBD]

The use of “trap bits” and “alternate representations of the same value” needs to be clarified,
or removed [TBD]. It could be referring to:

● Floating-point values in a struct with signaling NaN causing a trap.
● Load/store normalizing NaNs.
● Load/store flushing denormals to zero.

The proposed change would affect this behavior: atomic<T>won’t behave the same as a
plain T.

5.2. Disallowing Compare and Exchange
Another option discussed on the mailing is to disallow atomic<T>, or simply disallow
compare-and-exchange, if has_padding_bits<T>(this trait was propose in a recent paper

4

about hashing). This has portability implications, Peter Dimov points out that this would
leave atomic</*unsigned*/char>as the only strictly portable construct. All types can
have padding bits except the character types. From 3.9.1 p1:

For character types, all bits of the object representation participate in the value
representation. For unsigned character types, all possible bit patterns of the value
representation represent numbers. These requirements do not hold for other types.

Should this option be proposed, and can 3.9.1 p1 be modified to reduce the portability issue?
[TBD]

6. Parameter Pass-by-Value, and Value Return
Atomic value-initialization, assignment, store, exchange as well as compare-and-exchange
currently take their expectedparameter by value, meaning that the padding bits aren’t known
and memcpywon’t necessarily preserve the right padding bits. The expectedparameter for
these five functions could be changed to be a reference instead. [TBD]

Atomic load and exchange return by value, which will lose padding bits. Is there a way to
avoid this while keeping the same function signature? [TBD]

7. C Compatibility
We want to keep compatibility with C. Specifically, ATOMIC_INIT says:

The macro expands to a token sequence suitable for constant initialization of an
atomicvariable of static storage duration of a type that is initialization-compatible
with value.

We can’t guarantee that this properly initializes padding: 8.5.1 [dcl.init.aggr] doesn’t specify
what the value of padding bits or anonymous bitfield members are, neither does C99’s
designated initializers specification.

[dcl.init.aggr] could be modified to specify the value of padding bits, and C would have to be
modified in the same way. This change would affect more than just atomics containing
class-types. Should it be proposed? [TBD]

❧

5

