
Greatest Common Divisor and Least Common Multiple, v2

Document #: WG21 N3913
Date: 2014-02-25
Revises: N3845
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Expository implementation 2
3 Proposed wording 3

4 Acknowledgments 4
5 Bibliography 4
6 Document history 4

Abstract

This paper proposes two frequently-used classical numeric algorithms, gcd and lcm, for header
<numeric>. The former calculates the greatest common divisor of two integer values, while the
latter calculates their least common multiple. Both functions are already typically provided in
behind-the-scenes support of the standard library’s <ratio> and <chrono> headers.

Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.
(Integers are dear God’s achievement; all else is work of mankind.)

— IEOPOLD KRONECKER

It is now clear that the whole structure of number theory rests on a single foundation,
namely the algorithm for finding the greatest common divisor of two numbers.

— PETER GUSTAV LEJEUNE DIRICHLET

1 Introduction

1.1 Greatest common divisor
The greatest common divisor of two (or more) integers is also known as the greatest or highest
common factor. It is defined as the largest of those positive factors1 shared by (common to) each
of the given integers. When all given integers are zero, the greatest common divisor is typically
not defined. Algorithms for calculating the gcd have been known since at least the time of Euclid.2

Some version of a gcd algorithm is typically taught to schoolchildren when they learn fractions.
However, the algorithm has considerably wider applicability. For example, Wikipedia states
that gcd “is a key element of the RSA algorithm, a public-key encryption method widely used in
electronic commerce.”3

Note that the standard library’s <ratio> header already requires gcd’s use behind the scenes;
see [ratio.ratio]:

Copyright c© 2014 by Walter E. Brown. All rights reserved.
1Using C++ notation, we would say that the int f is a factor of the int n if and only if n % f == 0 is true.
2See http://en.wikipedia.org/wiki/Euclidean_algorithm as of 2013-12-27.
3Loc. cit.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3845.pdf
mailto:webrown.cpp@gmail.com
http://en.wikipedia.org/wiki/Euclidean_algorithm

2 N3913: Greatest Common Divisor and Least Common Multiple, v2

2 The static data members num and den shall have the following values, where gcd
represents the greatest common divisor of the absolute values of N and D:

— num shall have the value sign(N) * sign(D) * abs(N) / gcd.
— den shall have the value abs(D) / gcd.

Because it has broader utility as well, we propose that a constexpr, two-argument4 gcd function
be added to the standard library. Since it is an integer-only algorithm, we initially proposed that
gcd become part of <cstdlib>, as that is where the integer abs functions currently reside, but
consensus seemed to favor <numeric>.

1.2 Least common multiple
The least common multiple of two (or more) integers is also known as the lowest or smallest
common multiple. It is defined as the smallest positive integer that has each of the given integers
as a factor. When manipulating fractions, the resulting value is often termed the least common
denominator.

Computationally, the lcm is closely allied to the gcd. Although its applicability may be not quite
as broad as is that of the latter, it is nonetheless already in behind-the-scenes use to support the
standard library’s <chrono> header; see [time.traits.specializations]:

1 [Note: This can be computed by forming a ratio of the greatest common divisor
of Period1::num and Period2::num and the least common multiple of Period1::
den and Period2::den. — end note]

We therefore propose that a constexpr, two-argument4 lcm function accompany gcd and likewise
become part of the same header, <numeric>.

2 Expository implementation

2.1 Exposition-only helpers
We use two helper templates in our sample code. Since <cstdlib> defines abs() for only int,
long, and long long argument types, we formulate our own version to accommodate all integer
types, including unsigned standard integer types and any signed and unsigned extended integer
types. Note that our function is marked constexpr.

1 template< class T >
2 constexpr auto abs(T i) -> enable_if_t< is_integral<T>{}(), T >
3 { return i < T(0) ? -i : i; }

Second, we factor out the computation of the common_type of two integer types. This will allow
us, via SFINAE, to restrict our desired functions’ applicability to only integer types, as was done
for a single type in computing the return type in our abs template above:

1 template< class M, class N = M >
2 using common_int_t = enable_if_t< is_integral<M>{}() and is_integral<N>{}()
3 , common_type_t<M,N>
4 >;

4Multiple-argument versions can be obtained via judicious combination of std::accumulate and the proposed two-
argument form. It may be useful to consider an overload taking an initializer_list, however.

N3913: Greatest Common Divisor and Least Common Multiple, v2 3

2.2 Greatest common divisor
We formulate our gcd function as a recursive one-liner so that it can qualify for constexpr
treatment under C++11 rules:

1 template< class M, class N >
2 constexpr common_int_t<M,N> gcd(M m, N n)
3 { return n == 0 ? abs(m) : gcd(n, abs(m) % abs(n)); }

While this code exhibits a form of the classical Euclidean algorithm, other greatest common
divisor algorithms, exhibiting different performance characteristics, have been published.5 As of
this writing, it is unclear whether any of these is suitable for use in the context of a constexpr
function. We have also been made aware6 of additional greatest common divisor-related research
that may lead to a future proposal for a more general algorithm in the standard library.

2.3 Least common multiple
We also formulate our lcm function as a one-liner so that it, too, can qualify for constexpr
treatment under C++11 rules:

1 template< class M, class N >
2 constexpr common_int_t<M,N> lcm(M m, N n)
3 { return m * n == 0 ? 0 : (abs(m) / gcd(m,n)) * abs(n); }

3 Proposed wording7

3.1 Synopsis

Insert the following declarations into the synopsis in [numeric.ops.overview]:

namespace std {
...
template< class M, class N >
constexpr common_type_t<M,N> gcd(M m, N n);

template< class M, class N >
constexpr common_type_t<M,N> lcm(M m, N n);

}

3.2 New text

Append the following new sections to the end of [numeric.ops]:

26.7.7 Greatest common divisor [numeric.gcd]

template< class M, class N >
constexpr common_type_t<M,N> gcd(M m, N n);

1 Requires: |m| shall be representable as a value of type M and |n| shall be representable as a value
of type N. [Note: These requirements ensure, for example, that gcd(m,m) = |m| is representable as a
value of type M. — end note]

5E.g., [Web95, Sed97, Web05].
6Sean Parent: Reflector message [c++std-lib-ext-695], citing [Ste99].
7All proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are

displayed against a gray background.

4 N3913: Greatest Common Divisor and Least Common Multiple, v2

2 Remarks: If either M or N is not an integer type, the program is ill-formed.

3 Returns: zero when m and n are both zero, and the greatest common divisor of |m| and |n|,
otherwise.

26.7.8 Least common multiple [numeric.lcm]

template< class M, class N >
constexpr common_type_t<M,N> lcm(M m, N n);

1 Requires: |m| shall be representable as a value of type M and |n| shall be representable as a value
of type N.

2 Remarks: If either M or N is not an integer type, the program is ill-formed.

3 Returns: the least common multiple of |m| and |n|.

3.3 Feature-testing macro
For the purposes of SG10, we recommend the macro name __cpp_lib_gcd_lcm.

4 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments. Special
thanks to Cassio Neri for his extra-careful proofreading and helpful suggestions.

5 Bibliography

[N3797] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3797 (post-Chicago mailing), 2013-10-13. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

[Sed97] Mohamed S. Sedjelmaci and Christian Lavault: “Improvements on the Accelerated Integer GCD
Algorithm.” Information Processing Letters 61.1 (1997): 31–36.

[Ste99] Alexander Stepanov: “Greatest Common Measure: the Last 2500 Years.” Arthur Schoffstall Lecture
in Computer Science and Computer Engineering, Rensselaer Polytechnic Institute, 1999. http:
//www.stepanovpapers.com/gcd.pdf.

[Web05] Kenneth Weber, Vilmar Trevisan, and Luiz Felipe Martins: “A Modular Integer GCD Algorithm.”
Journal of Algorithms 54.2 (2005): 152–167.

[Web95] Kenneth Weber: “The Accelerated Integer GCD Algorithm.” ACM Transactions on Mathematical
Software 21.1 (1995): 111–122.

6 Document history

Version Date Changes

1 2014-01-01 • Published as N3845.

2 2014-02-25 • Restored missing abs() calls in algorithm implementations. • Excised comment re
standardizing our abs<> in future. • Required abs() result be representable in the
argument’s type. • Augmented the Acknowledgements. • Mentioned possible future
proposal for generalization. • Edited proposed wording per SG6 guidance at Issaquah.
• Published as N3913.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.stepanovpapers.com/gcd.pdf
http://www.stepanovpapers.com/gcd.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Expository implementation
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Document history

