
TransformationTrait Alias void_t

Document #: WG21 N3911
Date: 2014-02-23
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Discussion 1
3 Proposed wording 3
4 Addendum 3

5 Acknowledgments 4
6 Bibliography 4
7 Document history 5

Abstract

This paper proposes a new TransformationTrait alias, void_t, for the C++ Standard Library. The
trait has previously been described as an implementation detail toward enhanced versions of two
other C++11 standard library components. Its value thus proven, void_t’s standardization has
been requested by several noted C++ library experts, among others.

1 Introduction

We introduced an alias template named void_t in each of two recent papers ([N3843] and [N3909])
that were otherwise independent. While very similar in design and intent, the technical details of
the two versions of void_t differed somewhat from each other in that the latter version had a
more general form than did the former. However, each of those papers treated void_t as merely
an implementation detail en route to a different goal.

After seeing those papers, C++ library experts Stephan T. Lavavej, Howard Hinnant, and
Eric Niebler, among several others, independently commented1 that, even though the alias is
extremely simple to implement, they would nonetheless find it useful to have void_t as a standard
component of the C++ library. This paper therefore proposes to make it so.

We begin with an edited recap of our previous writings on the design, utility, and implementa-
tion of void_t. We then propose wording for its future incorporation into <type_traits>. Finally,
the Addendum recapitulates questions raised on the lib-ext reflector regarding the new trait’s
name.

2 Discussion

2.1 Overview and use case
The purpose of the void_t alias template is simply to map any given sequence of types to a single
type, namely void. Although it seems a trivial transformation, it is nonetheless an exceedingly

Copyright c© 2014 by Walter E. Brown. All rights reserved.
1For example, STL wrote in private email on 2013-11-19, “In fact, this . . . is so clever that I’d like to see void_t

proposed for standardization.”

1

mailto:webrown.cpp@gmail.com

2 N3911: TransformationTrait Alias void_t

useful one, for it makes an arbitrary number of well-formed types into one completely predicable
type.

Consider the following example of void_t’s utility, a trait-like metafunction to determine
whether a type T has a type member named type:

1 template< class, class = void >
2 struct has_type_member : false_type { };
3 template< class T >
4 struct has_type_member<T, void_t<typename T::type>> : true_type { };

Compared to traditional code that computes such a result, this version seems considerably
simpler, and has no special cases (e.g., to avoid forming any pointer-to-reference type). The code
features exactly two cases, each straightforward:

a) When there is a type member named type, the specialization is well-formed (with void as its
second argument) and will be selected, producing a true_type result;

b) When there is no such type member, SFINAE will apply, the specialization will be nonviable,
and the primary template will be selected instead, yielding false_type.

Each case thus obtains the appropriate result.

As described in our cited papers, we have also applied void_t in the process of implementing
enhanced versions of the C++11 standard library components common_type and iterator_traits.

2.2 Implementation/specification
Our preferred implementation (and specification) of void_t is given by the following near-trivial
definition:

1 template< class... > using void_t = void;

Given a template argument list consisting of any number2 of well-formed types, the alias will thus
always name void. However, if even a single template argument is ill-formed, the entire alias
will itself be ill-formed. As demonstrated above and in our earlier papers, this becomes usefully
detectable, and hence exploitable, in any SFINAE context.

2.3 Implementation workaround
Alas, we have encountered implementation divergence (Clang vs. GCC) while working with the
above very simple definition. We (continue to) conjecture that this is because of CWG issue 1558:
“The treatment of unused arguments in an alias template specialization is not specified by the
current wording of 14.5.7 [temp.alias].”

The notes from the CWG issues list indicate that CWG has all along intended “to treat this
case as substitution failure,” a direction entirely consistent with our intended uses. Moreover,
proposed wording3 generated and approved during the recent Issaquah meeting follows the
indicated direction to resolve the issue, so it seems increasingly likely that we will in the not-too-
distant future be able to make portable use of our preferred simpler form.

Until such time, we employ the following workaround to ensure that our template’s argument
is always used:

1 template< class... > struct voider { using type = void; };
2 template< class... T0toN > using void_t = typename voider<T0toN...>::type;

2While we have not yet found a use for the degenerate case of a zero-length template argument list, we also see no
reason to forbid it.

3There is even a proposed Example that embeds our proposed void_t specification!

N3911: TransformationTrait Alias void_t 3

3 Proposed wording4

Append to [meta.type.synop] (20.10.2), above paragraph 1, as shown:

namespace std {
...
template <class...>

using void_t = void;
}

For the purposes of SG10, we recommend a feature-testing macro named either
__cpp_lib_void_t or __cpp_lib_has_void_t.

4 Addendum

After a preprint of this paper was made available on the Issaquah wiki, the above-proposed trait’s
name was questioned. This section will summarize the issues and proposals as recorded on the
lib-ext reflector so as to permit a full and fair (((((hhhhhbikeshed discussion at an appropriate future time.

• “Should void_t be named something else?
“It doesn’t follow the ‘old’ use of _t like size_t or nullptr_t. It doesn’t quite follow the new
use, like decay_t being decay<T>::type. ie void_t is not void<T,U,V>::type.
“Should it be named closer to it [sic] usage than its implementation? Of course, if it is named
based on usage (ie for SFINAE), and is later reused for something else, the name (or new
usage) may be seen as ‘incorrect’.” [Tony Van Eerd, c++std-lib-ext-681].

• “. . . I have no problem with void_t. It’s not too hard to understand that this is a type
transformation from any type to void.” [Ville Voutilainen, c++std-lib-ext-682].

• “. . . I think make_void_t, as_void_t, or to_void_t would be more descriptive. . . . ” [Pablo
Halperin, c++std-lib-ext-684].

• “By its very nature, the whole thing is confusing. . . . At the same time, it is very awesome.
That’s why I wonder about check_for_type<> or sfinae_check<> or . . . [sic] something
more about its usage. Because without seeing it in context, it is boggling. [Tony Van Eerd,
c++std-lib-ext-685].

• “The naive assumption would be typedef void void_t; but why would you want a typedef
for void?
“I think it might be a good idea not to lead people into this misconception and the obvious
questions that would arise from that.” [Bjarne Stroustrup, c++std-lib-ext-686].

• “I [suggest] void_type as a trait with a nested type, void_type_t as an alias for that nested
type.” [Ville Voutilainen, c++std-lib-ext-687].

• “. . . What about enable_if_types_exist_t[?] [Pablo Halperin, c++std-lib-ext-688].

• “voidify_t! :-)” [Pablo Halperin, c++std-lib-ext-690].

• “. . . enable_if_valid” [Howard Hinnant, c++std-lib-ext-691].

• “. . . enable_if_exist<>.” [Jeffrey Yasskin, c++std-lib-ext-692].

4All proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are
displayed against a gray background.

4 N3911: TransformationTrait Alias void_t

• “ These are good ideas . . . , but I’d like to point out that Walter’s overall technique is highly
advanced (and elegant), and surprising even to experienced template metaprogrammers.
I don’t think that we need to worry about making the name extremely self-explanatory.
Something like always_void would describe what it does (immediately, not overall), without
introducing enable_if’s connotations (enable_if takes a bool and an optional type, so
what does enable_if_valid take?).
“Hmm. How about void_if_valid? That both says what it returns, and says what it’s trying
to do.” [Stephan T. Lavavej, c++std-lib-ext-693].

• “void_if_valid would satisfy me, particularly given the lack of the optional type.” [Jeffrey
Yasskin, c++std-lib-ext-694].

• “Actually, what it returns isn’t very important. In fact, I don’t want to lose the elegance of it,
but it should maybe return true_type, not void. More self-documenting. (There is a subtle
difference there — void can’t be instantiated, but I don’t think that makes a difference any
where?)
“So true_if_valid?
“Or just type_check<>.” [Tony Van Eerd, c++std-lib-ext-703].

• “Maybe: template<typename T, typename U = void> using enable_if_valid_t = U;”
[Richard Smith, c++std-lib-ext-708].
“It needs to be var-arg. T... [sic]” [Tony Van Eerd, c++std-lib-ext-709].

• “I’ve been using the first template for a while (the ::type version would be first_t then).
The idea is the same as void_t, except that the type you get is not void but the first of the
template parameters. Just thought I’d mention this version. On the other hand, we will
probably want a kth_t (nth_param_t?) to extract the k-th parameter from a pack, which
makes first_t unnecessary but may be a bit overkill for void_t.”
“Just to expand a bit on the uses of first_t:
“1) first_t<T...> extracts the first type.
“2) first_t<void,...> same as void_t. With partial specializations, and until we get
concepts, it is occasionally helpful to use it with something other than void (although
in practice I add an extra dummy parameter to classes I intend to partially specialize in
complicated ways, so I don’t often use first_t for that).
“3) first_t<T> same as std::identity<T>::type, makes it non-deducible.
“It is multi-purpose ;-) On the other hand, that makes it less convenient as a vocabulary
helper because its name can’t reflect all the uses (type_checker, nondeducible_t, etc).
[Marc Glisse, c++std-lib-ext-697, c++std-lib-ext-717].

Despite the above opinions, it remains our belief that the void_t name was selected “. . . following
a common convention of long standing, namely that _t often denotes a typedef name, as is the
case in size_t and ptrdiff_t, for example. By that reasoning, void_t seems consistent with
precedent.” [W. Brown, c++std-lib-ext-681].

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N3797] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3797 (post-Chicago mailing), 2013-10-13. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

N3911: TransformationTrait Alias void_t 5

[N3843] Walter E. Brown: “A SFINAE-Friendly std::common_type.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3843 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3843.pdf.

[N3844] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3844 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3844.pdf.

[N3909] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits, v2.” ISO/IEC JTC1/SC22/WG21
document N3909 (post-Issaquah mailing), 2014-02-10. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2014/n3909.pdf. A revision of [N3844].

7 Document history

Version Date Changes

1 2014-02-23 • Published as N3911.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Proposed wording
	4 Addendum
	5 Acknowledgments
	6 Bibliography
	7 Document history

