
Relational Database access layer Johann Anhofer �1

Document number:" N3886"
Date:" 2014-01-18"
Project:" Programming Language C++, SG11 (Databases)"
Reply-to:" Johann Anhofer <johann.anhofer@gmail.com>" """
A Proposal to add a Database Access Layer to the Standard Library!1"""
I. Table of Contents!

Table of Contents" 1"

Introduction" 2"

Motivation and Scope" 2"

Architecture" 3"

Impact on the Standard" 3"

Design Decisions" 3"

Data transport" 3"

Null handling" 4"

Bindings" 4"

Iterators" 4"

Database driver handling" 4"

Technical Specifications" 4"

Classes of the public interface" 4"

Driver registry/factory" 5"

connection" 5"

statement" 6"

result" 7"

transaction" 8"

parameters" 9"

Interfaces for objects of the private interface:" 9"

driver_interface" 9"

connection_interface" 10"

statement_interface" 10"

result_interface" 10"

transaction_interface" 10"

parameters_interface" 11"

Helper classes" 11"

transaction_scope" 11"

� SQL based relational databases1

mailto:johann.anhofer@gmail.com

Relational Database access layer Johann Anhofer �2

"
II. Introduction!

This document describes an easy to use database abstraction layer for C++. It describes a set of classes
which can be used to access an arbitrary SQL based relational database system."
There exist a lot of different database systems in the world, with a lot of different API’s for accessing data
within a C++ program. The most API’s are in plain old C, which make the usage even harder for novice
programmers. So we need a simple harmonized layer which can be easily extended for new database
systems and also easily used by programmers.""
III. Motivation and Scope!

Accessing different database systems in a C++ program can be very cumbersome, because of the many
different API’s, almost all of them are in plain old C. There exists a number of abstractions to access dif-

null_type" 11"

authentication, no_authentication, user_password_authentication" 11"

Data transport classes" 11"

value" 11"

parameter" 12"

Free functions" 12"

execute_ddl" 12"

execute_non_query" 13"

execute_scalar" 13"

execute" 13"

type_of" 13"

value_of" 13"

cast_to" 14"

is_null" 14"

Exceptions" 14"

To Do" 14"

Examples" 15"

Example #1: Connecting to a sqlite „in memory“ database" 15"

Example #2: Using the statement object and execute" 15"

Example #3: Use the result object to extract data from a query" 15"

Example #4: Use transactions and transaction_scope" 16"

Example #5: Bind parameters" 16"

Acknowledgements" 16"

Changelog" 16"

Second Draft" 16"

Third Draft" 16"

Fourth Draft" 16"

References" 17"

Relational Database access layer Johann Anhofer �3

ferent database systems with the same API. For example ODBC. But ODBC on its own has a very large,
verbose and complex structure, and it also has been done in plain old C.""
Different C++ Frameworks provide different abstraction layers for database access, which try to solve the
problem described above. But they can’t be used outside of the context of the frameworks. (E.g. Qt
Framework, POCO Libraries, MFC, …).""
An exception to the above is CppDB, which has been designed with similar goals in mind, like presented
in this proposal. „CppDB is an SQL connectivity library that is designed to provide platform and Database
independent connectivity API similarly to what JDBC, ODBC and other connectivity libraries do“ [8].""
This proposal tries to describe another abstraction layer, to reconcile all the different API’s. The layer must
be easy to understand/use and easy to extend for new database systems. It tries to extract the most
common and needed features and sketch model classes reflecting this features. ""
1. Architecture!"
The general architecture for the database access layer consists of 4 sub layers. ""
1. Public Interface"
2. Private Interface"
3. Database Client API"
4. Database server/file""
Only the public interface is visible to the user of the model classes. So there should be no need to struggle
around with different API’s. "
The private interface describes objects specific to one database system. In the future this private layer
should be delivered by the database vendors."
The private objects maybe only a layer for accessing the database client API, which itself communicates
with the database file/server, but layer 2 and 3 can also be only one part.""
The most important features to be implemented should be.""
• transactions "
• forwarding queries"
• DDL statements"
• named and positional parameters"
• BLOB handling in chunks of data."
• Unicode support for column/parameter values."
• consequent null handling""
IV. Impact on the Standard!

The public and private interfaces (see part III) are provided by the standard. The implementation of the
public interfaces are also provided by the standard. The implementation of the private interfaces are pro-
vided by database system vendors.""
For transporting data from the users program to the database client API (Layer 3) there is a versatile data
container, like the any class from the boost library, needed.""
Some parts of the public interface use variadic templates and other C++ 11 features, like smart pointers.
So C++ 11 is needed (at least for the sample implementation).""
V. Design Decisions!

Data transport!"

Relational Database access layer Johann Anhofer �4

For data transport from and to the user code, a container class is used which is able to transport data of
an arbitrary type (like boost::any), but not a variant based implementation like QVariant from QtSql [4].
Variants tend to influence the user code too much and QVariant has some odd behavior too (e.g. typed
null values, QVariant(QVariant::Int) represents a null value of type integer, but null shouldn’t have a
type). ""
Null handling!"
So a separate class as null type will be introduced. Accessing the type or value of null always leads to an
exception. Only checking for null with is_null() is valid.""
Bindings!"
Also no binding to existing variables is introduced (like in [1], [2] and [3]), because this leads all to easy to
dangling pointers/references. C++ 11 provides move semantics so return by value can be used without
performance loss.""
Iterators!"
No iterators are provided to read a result set, because a result set is not a container. Its time and memory
consumption are not easily predictable (without looking at the query execution plan). Maybe iterators will
lead novice users also to misuse standard library algorithms like std::sort, std::accumulate, … for which
standard SQL functionality will be much better used, so the decision was not to provide iterators over re-
sult sets. ""
Database driver handling!"
For most flexibility on using different drivers for different database systems, a registry for drivers is intro-
duced. So drivers which are loaded at runtime are able to register itself to this registry. This also prevents
the user from handling with implementation details of a database driver. To generate a driver object a
string key can be used.""
VI. Technical Specifications!

This section holds a detailed specification of the needed classes, helper classes and free functions. A
sample implementation was done by the author of this proposal. Drivers for sqlite (a server less database
engine [7]) and the open source database server firebird [6] are also provided by this implementation.""
Classes of the public interface!"
The public interface consists of the following classes, this classes use driver specific implementation ob-
jects which implement the associated private interface.""

"

Class Description

connection The connection object establishes a connection to the specified database
system.

statement This class represents a SQL statement, which can be prepared, parameter
values can be bound to it and then executed.

result The access class for the result set of a SQL query.

transaction This class handles database transactions.

parameters An accessor class for the parameters of a SQL statement.

Relational Database access layer Johann Anhofer �5

All these objects are moveable but not copyable."
 "
Driver registry/factory!"
The driver registry is a set of free functions for registering/deregistering database drivers via a driver
name. A connection object can create a new instance of a registered driver via its key. Each driver must
implement the driver_interface (see Interfaces for objects of the private interface).""

namespace driver_registry
{
 using driver_creator_function = std::function<driver_interface *()>; "
 void register_driver(const std::string &name, driver_creator_function creator);
 void unregister_driver(const std::string &name); "
 std::shared_ptr<driver_interface> make_driver(const std::string &name) const;
}; "

The namespace contains a type driver_creator_function which is a callable to create an instance of a
named driver. All three functions must operate in a thread safe manner.""

"
The driver registry is typically used by driver implementers to register the driver and by the connection
class to create an instance of the driver.""

driver_registry::register_driver(„sqlite“, []{return sqlite_driver::create();});
driver_registry::unregister_driver(„sqlite“); "
auto drv = driver_registry::make_driver(„sqlite“); "

Basically the driver object is used to create the private implementation objects for the public interface ob-
jects.""
Now a detailed description of the classes in the above table follows."
 "
1. connection!"
The connection class establishes a connection to the database system. The user specifies the driver to
use by its name. The class uses the connection_interface to communicate with the private implementation
of the connection. ""

class connection
{
public:
 explicit connection(const std::string &driver_name); "
 using key_value_pair = std::unordered_map<std::string, std::string>; "
 void open(const std::string &database, const authentication &auth =

no_authentication{}, const key_value_pair & options = key_value_pair{});
 void close();
 bool is_open() const;
 handle get_handle() const;
}; "

On construction the user specifies the name of the database driver to use (which must be registered be-
fore to the driver registry)."

register_driver Registers a callable for a driver name. The callable creates an instance of
the driver object.

unregister_driver Unregisters the driver.

make_driver Creates an instance of the specified driver and returns a shared pointer to
the driver_interface implementation.

Relational Database access layer Johann Anhofer �6

"
To establish/close a connection to the database system the open/close methods are used. The parame-
ters for open are the database name, which may be a path or registered name, the authentication method
which is discussed later (see Helper classes) and the options. The options are a list of key/value pairs,
which describe properties specific to the used database driver. For example the {{“encoding“, “UNI-
CODE_FSS“}} specifies the encoding character set for a connection to the firebird database. The type of
the key_value_pair container is an unordered_map with string keys and values. This may be defined
„implementation defined“ if more flexibility is needed here.""
If the connection is already open, a db_exception derived exception should be thrown. ""
There is no constructor, which includes the call to open, defined. open maybe a long running operation, at
least in a failing situation (e.g. a network timeout). Most programmers expect constructors to be executed
fast. ""
The connection will be closed automatically if the destructor of the connection object is invoked. The user
can manually close the connection with the close parameter.""
Via is_open one is able to check if a connection object already holds an open connection or not.""
The get_handle method retrieves a driver specific handle value to the native connection object of the
used SQL API, if any.""
Look at example 1 of section VIII to see how a connection to a sqlite in-memory database is established.""
2. statement!"
The statement class handles preparation and execution of a SQL statement, as string. It also provides
access to the parameters object, which is used to bind arguments to named and positional parameters.""

class statement
{
public:

statement(const std::string &sql_cmd, connection &conn);
explicit statement(const connection &conn); "
void prepare(const std::string &sql_cmd);
bool is_prepared() const; "
void reset(); "
void execute_ddl();
template<typename ...Args>
void execute_ddl(Args&& ...args);
void execute_ddl(std::initializer_list<parameter> params); "
void execute_non_query();
template<typename ...Args>
void execute_non_query(Args&& ...args);
void execute_non_query(std::initializer_list<parameter> params); "
value execute_scalar();
template<typename ...Args>
value execute_scalar(Args&& ...args);
value execute_scalar(std::initializer_list<parameter> params); "
result execute();
template<typename ...Args>
result execute(Args&& ...args);
result execute(std::initializer_list<parameter> params); "
parameters get_parameters() const; "
handle get_handle() const;

}; "

Relational Database access layer Johann Anhofer �7

On construction the user specifies the connection object which is used to execute the statement. Optional-
ly a SQL command string can be specified. In this case the SQL command will be prepared in the con-
structor body. ""
If no SQL command was specified at the constructor, a new SQL command can be prepared with the pre-
pare function. The is_prepared function checks if a statement object already holds a prepared SQL
statement.""
After binding arguments to parameters and executing the statement a call to reset is used to reset the
statement to the initial (prepared) state, so another set of arguments can be provided and the statement
can be executed again (e.g. for consecutive inserts to the same table)."
A SQL statement can be executed in four different ways.""
1. If the SQL string holds a DDL statement, use execute_ddl"2

2. If the SQL string holds a DML statement which doesn’t return rows, e.g. INSERT INTO or DELETE 3

FROM, use execute_non_query."
3. If the SQL string holds a DML statement which returns only one row, use execute_scalar to retrieve

the value of the first column of this row."
4. If the SQL string holds a DML statement which returns an arbitrary number of rows use execute.""
For each of these four functions a set of three overloads are present.""
1. With no parameters."
2. With an arbitrary number of parameters (as a variadic template)"
3. With an initializer list of parameter objects (see data transport classes).""
The third overload is the only way to use named parameters, the second overload is used for positional
parameters.""
The four execute functions also exist as free functions, to simplify the process of preparing a statement,
binding arguments to the parameters and executing the statement. See „free functions“ for more informa-
tions.""
The get_parameters function retrieves the parameters object, which is used to bind arguments to para-
meters of the SQL statement. ""
The get_handle method retrieves a driver specific handle value to the native statement object of the used
SQL API, if any.""
Look at example 2 of section VIII to see how a statement is used to execute SQL commands.""
3. result!"
The result class represents the result set of a SQL query executed via the statement object.""

class result
{
public:

void move_next();
bool is_eof() const; "
int get_column_count() const; "
std::string get_column_name(int column) const;
int get_column_index(const std::string &column_name) const;

� DDL … Data definition language. Statements to build a database, like create table/view/procedure and so forth.2

� DML … Data manipulation language. Statements to manipulate data: insert, update and delete also known as CRUD (CReate 3

Update Delete).

Relational Database access layer Johann Anhofer �8

"
bool is_column_null(int column) const;
bool is_column_null(const std::string &column_name) const; "
value get_column_value(int column) const;
value get_column_value(const std::string &column_name) const; "
value operator[](int column) const;
value operator[](const std::string &column) const; "
handle get_handle() const;

}; "
The result class cannot be constructed by the user, the only way to get an instance of this class is to call
the execute function of a statement object.""
With subsequent calls to move_next all rows of a result-set can be processed from the first to the last.
Only forward cursors are allowed for this, so no backward navigation is possible.""
The is_eof returns true if no more rows are within the result set. ""
get_column_count returns the number of columns defined by the result-set."
Each column can be accessed via its name or its position. The name is retrieved by get_column_name
and the position by get_column_index.""
A column’s value can be checked against null with the is_column_null functions (one overload for
named columns, and one for column positions).""
The value object for a column can be retrieved with the get_column_value functions (see „data trans-
portation classes“ for more information about the value class). The bracket operator is overloaded for
convenience, it also returns the value object of a given column.""
The get_handle method retrieves a driver specific handle value to the native result object of the used
SQL API, if any.""
Look at example 3 of section VIII to see how a result-set of a SQL query is used to retrieve data.""
4. transaction!"
The transaction class is used to execute different SQL statements atomically.""

class transaction
{
public:

explicit transaction(const connection &conn); "
void begin();
void commit();
void rollback(); "
bool is_open() const; "
handle get_handle() const;

}; "
A transaction object is created with the connection for which the transaction should be running. The de-
structor rolls the transaction back if neither commit nor rollback is called after calling begin. For automat-
ic begin/commit sequences over a statement block use the transaction_scope class from „helper
classes“.""
A transaction is started with a call to begin. If all goes well, changes can be accepted via a call to commit,
otherwise call rollback to reverse the changes. is_open checks if begin was called but not commit or
rollback.""

Relational Database access layer Johann Anhofer �9

The get_handle method retrieves a driver specific handle value to the native transaction object of the
used SQL API, if any.""
Look at example 4 of section VIII to see how to use transactions.""
5. parameters!"
The parameters class is used to bind arguments to parameters of a SQL statement.""

class parameters
{
public:

int get_count() const; "
template<typename T>
void bind(int pos, T && value);
template<typename T>
void bind(const std::string &name, T && value);
void bind(const parameter ¶m); "
handle get_handle() const;

}; "
An instance of a parameters class can only be retrieved by a call to the get_parameters function of the
statement object.""
get_count retrieves the number of parameters in the SQL statement.""
bind is used to bind a value object to the given parameter of the associated SQL statement. The first
overload is used for positional parameters. The second for named parameters and the third overload is
provided to bind an instance of a parameter object (see „data transport classes“). ""
The get_handle method retrieves a driver specific handle value to the native parameters object of the
used SQL API, if any.""
Look at example 5 of section VIII to see how to bind arguments to SQL parameters.""
Interfaces for objects of the private interface:!"
For each class in the public interface there exists a private interface, which provides access to the imple-
mentation of public objects. For each database system different implementations of these interfaces are
needed. Such private implementation objects are created via the driver object which implements the dri-
ver_interface. All interfaces must have an empty virtual destructor, which isn’t explicit stated in the descrip-
tion below."
 "
1. driver_interface!"
This is the interface which all database driver objects have to implement.""
struct driver_interface
{
virtual connection_interface *make_connection() const = 0;
virtual statement_interface *make_statement(const shared_connection_ptr &conn) const = 0;
virtual parameters_interface *make_parameters(const shared_statement_ptr &stmt) const = 0;
virtual result_interface *make_result(const shared_statement_ptr &stmt) const = 0;
virtual transaction_interface *make_transaction(const shared_connection_ptr &conn) const = 0;

}; "
Each function of the driver object creates an instance of the private implementation of an object from the
public interface. So for e.g. the make_connection function creates the private implementation for the con-
nection class. The classes in the public interface mostly forward function calls to the implementation ob-
jects. Some objects need a second object to work, either connection or statement. So a shared pointer

Relational Database access layer Johann Anhofer �10

to the private implementation of these classes are forwarded to make_statement, make_parameters,
make_result and make_transaction. ""
The make_ functions return raw pointers instead of unique/shared pointers. So, an implementer is free to
create one or multiple instances of the private objects and store pointers to them in unique or shared
pointers."
 "
2. connection_interface!"
The most functions of the connection_interface are the same as described in the public interface.""

struct connection_interface
{
virtual void open(const std::string &,
 const authentication &auth = no_authentication{},
 const key_value_pair & = key_value_pair{}
) = 0;
virtual void close() = 0;
virtual bool is_open() const = 0;
virtual handle get_handle() const = 0;
virtual void set_current_transaction(const shared_transaction_ptr &trans) = 0;
virtual shared_transaction_ptr get_current_transaction() const = 0;
}; "

With set_current_transaction a transaction object is able to link a transaction to the connection object.
On commit or rollback the transaction object sets the transaction to an invalid handle (e.g. nullptr).""
Other objects can retrieve these transaction via get_current_transaction. ""
3. statement_interface!"
All functions of the statement_interface are part of the public interface of the statement class.""

struct statement_interface
{

virtual void prepare(const std::string &sqlcmd) = 0;
virtual bool is_prepared() const = 0;
virtual void execute_ddl() = 0;
virtual void execute_non_query() = 0;
virtual void execute() = 0;
virtual void reset() = 0;
virtual handle get_handle() const = 0;

}; "
4. result_interface!"
All functions of the result_interface are part of the public interface of the result class.""

struct result_interface
{

virtual int get_column_count() const = 0;
virtual bool is_eof() const = 0;
virtual void move_next() = 0;
virtual value get_column_value(int column) const = 0;
virtual value get_column_value(const std::string &column_name) const = 0;
virtual std::string get_column_name(int column) const = 0;
virtual int get_column_index(const std::string &column_name) const = 0;
virtual bool is_column_null(int column) const = 0;
virtual bool is_column_null(const std::string &column_name) const = 0;
virtual handle get_handle() const = 0;

}; "
5. transaction_interface!"
All functions of the transaction_interface are part of the public interface of the transaction class.""

struct transaction_interface

Relational Database access layer Johann Anhofer �11

{
virtual void begin() = 0;
virtual void commit() = 0;
virtual void rollback() = 0;
virtual bool is_open() const = 0;
virtual handle get_handle() const = 0;

}; "
6. parameters_interface!"
All functions of the parameters_interface are part of the public interface of the parameters class.""

struct parameters_interface
{

virtual int get_count() const = 0;
virtual void bind(const parameter &) = 0;
virtual handle get_handle() const = 0;

}; "
Helper classes!"
A few helper classes exist to support the public interface.""
1. transaction_scope!"
This class issues a begin/commit transaction for a block scope. It starts the given transaction in the con-
structor body and commits the transaction in the destructor body, if neither commit nor rollback was called
in between. If a transaction_scope object is destroyed while stack unwinding during exception handling,
the destructor rolls the transaction back. So only if the object is destroyed during normal scope exit (end of
bracket or function return) the transaction is committed.""

transaction tr{conn}; // create a transaction for database connection conn.
{
 transaction_scope trs{&tr};
 // .. modify some data in the database
} "

2. null_type!"
This special type is used to mimic database null values. Instances of this class are used to be passed as
parameter value to the database and to retrieve null values from the database. Accessing a null-value
leads to a value_is_null exception (see the type_of and value_of free functions). The only valid oper-
ation for a null value should be determining if it’s a null value (see the is_null free function).""
3. authentication, no_authentication, user_password_authentication!"
The authentication base class and two descendants, one for no authentication (e.g. for sqlite databases)
and one for username/password authentication.""
connection con_sqlite{“sqlite“};
con_sqlite.open(“:memory:“, no_authentication{}); "
connection con_firebird{“firebird“};
con_firebird.open(“localhost:employee“, user_password_authentication{“SYSDBA“, “masterkey“}); "

Data transport classes!"
These classes are used to transport values from and to the database. ""
4. value!"
A versatile type (like boost’s any). It is able to carry a value of any datatype, but it’s not a kind of a variant.
So once it was created it isn’t modifiable nor one can change the type of the transported value. The con-

Relational Database access layer Johann Anhofer �12

tents should be restricted, so that no reference types or pointer types could be stored, except for a con-
stant character array of type const char *, const wchar_t *, const char16_t * and const
char32_t *."
value should be both copyable and movable. Its content is accessed via the free functions type_of, val-
ue_of, is_null and cast_to.""
5. parameter!"
The parameter class is a pair of a name or index and an instance of a value class (see above). It is used
to bind a parameter value to a named or positional parameter of a SQL command. It is copyable and
movable.""
The public interface is as following:""

class parameter
{
public:
 parameter(int pos, value arg);
 bool has_index() const;
 int get_index() const; "
 parameter(std::string name_in, value arg);
 bool has_name() const;
 std::string get_name() const; "
 value get_value() const;
}; "

The first constructor with the integer argument is for positional parameters. The pos argument is the num-
ber of the parameter placeholder in the SQL statement. 1 is the first parameter placeholder."
The second constructor is for named parameters. ""
With has_index a check for a positional parameter can be made and with has_name for a named parame-
ter.""
get_index retrieves the position of the parameter, if it is a positional parameter, otherwise an exception is
thrown. ""
get_name retrieves the name of the parameter, if it is a named parameter, otherwise an exception is
thrown.""
get_value retrieves the argument value for the parameter.""
Free functions!"
A number of free functions exists to simplify the usage of the public interface. First, the four execute vari-
ants of the statement class are also present as free functions. Each of them are overloaded for arbitrary
number of parameter values of different types and an arbitrary number of parameter objects.""
The second group of free functions is used to handle value and parameter types.""
1. execute_ddl!"

template<typename ...Args>
void execute_ddl(connection &conn, const std::string &sql, Args && …args); "
void execute_ddl(connection &conn, const std::string &sql,

 std::initializer_list<parameter> params); "
This function executes a DDL query sql against the database to which conn is connected. It takes an arbi-
trary number of arguments for the parameter placeholders in the SQL command. To use named parame-
ters the second overload has to be used. See statement::execute_ddl.""

Relational Database access layer Johann Anhofer �13

2. execute_non_query!"
template<typename ...Args>
void execute_non_query(connection &conn, const std::string &sql, Args && …args); "
void execute_non_query(connection &conn, const std::string &sql,

std::initializer_list<parameter> params); "
This function executes a non querying SQL command sql against the database to which conn is connect-
ed. It takes an arbitrary number of arguments for the parameter placeholders in the SQL command. To use
named parameters the second overload has to be used. See statement::execute_non_query.""
3. execute_scalar!"

template<typename ...Args>
value execute_scalar(connection &conn, const std::string &sql, Args &&...args) "
value execute_scalar(connection &conn, const std::string &sql,

std::initializer_list<parameter> params); "
This function executes a SQL command sql against the database to which conn is connected and returns
the value of the first column of the first row of the result set. It takes an arbitrary number of arguments for
the parameter placeholders in the SQL command. To use named parameters the second overload has to
be used. See statement::execute_scalar.""
4. execute!"

template<typename ...Args>
result execute(connection &conn, const std::string &sql, Args && ...args) "
result execute(connection &conn, const std::string &sql,

std::initializer_list<parameter> params); "
This function executes a SQL command sql against the database to which conn is connected and returns
the result set. It takes an arbitrary number of arguments for the parameter placeholders in the SQL com-
mand. To use named parameters the second overload has to be used. See statement::execute.""
5. type_of!"

template<typename T>
std::type_index type_of(const T &t); "

This function determines the type of the argument. This is used to get access to the type of the embedded
type for a value or parameter object. If a value or parameter object holds the null_type a val-
ue_is_null exception is thrown. For all other T’s type_of returns typeid(T).""
6. value_of!"

template<typename T>
T value_of(const T &t); "

This function is used to extract the embedded type for a value or parameter object. If T is the null_type,
it throws a value_is_null exception. For all other T’s this function returns t. For value and parameter
objects if T is not equal to the type of the embedded data or the embedded data is not convertible to T, a
type_mismatch exception is thrown.""
So, value_of<long>(value{10}) returns 10l, but value_of<std::string>(value{10}) throws a
type_mismatch exception. All integer types are convertible to each other and all floating point types are
convertible to integer types and vice versa.""
If a value or parameter object holds the null_type, value_of throws a value_is_null exception.""

Relational Database access layer Johann Anhofer �14

7. cast_to!"
template<typename T>
T cast_to(const value &val); "
template<typename T>
T cast_to(const parameter &arg); "

cast_to extends the possibilities of value_of. It is used to convert the contents of value/parameter to
an arbitrary type, if this conversion is defined. So value_of<std::string>(value{10}) should return
std::string(“10“).""
If a value or parameter object holds the null_type a value_is_null exception is thrown.""
8. is_null!"

template<typename T>
constexpr bool is_null(const T &t); "

This function is used to check a type against the null_type. It returns true if T is the null_type or T is of
type value or parameter with an embedded null_type. In all other cases is_null returns false.""
Exceptions!"
For error handling, exceptions are used consequently. ""
• value_is_null derived from std::logic_error, is thrown if an instance of the null_type is accessed

with type_of, value_of or cast_to."
• type_mismatch derived from std::runtime_error is thrown if the embedded data of a value or para-

meter object cannot be converted to the destination type using value_of or cast_to."
• db_exception derived from std::runtime_error is used as base class for more specific exceptions of

a driver implementation. For instance sqlite_exception is used in the sample implementation of the
sqlite driver.""

VII.To Do!

As with all work, this draft is far from complete. Much more work has to be invested to push it further, if the
proposal gets accepted. ""
The database driver interface should be extended for a feature query facility. So a user of the library can
determine, if a feature is available for the used database system, or not. Maybe string values can be used
here. For instance bool query_feature(“named parameters“). Maybe a more elaborate mechanism is
needed.""
BLOB handling for instance is completely missing, the sqlite sample implementation uses a
std::vector<uint8_t> for smaller BLOB’s which fit easily into memory. But handling BLOB’s in chunks
of data is crucial for larger BLOB’s. So different database API’s need to be analyzed to extract the com-
mon parts and present it to the users of the library in an easy understandable manner.""
Unicode handling is crucial for modern database usage. So we need a way to encode/decode Unicode
strings from ANSI (char *) and wide characters (wchar_t *) to and from the database API’s.""
Now, the only support for authentication is plain-text username/password. A more sophisticated method is
needed to pass credential data to the SQL client API’s. Specially on windows, most database systems
support integrated security access, which should be supported by the authentication classes. The type
switching to determine which method was used in the sample implementation should be replaced by a
more versatile solution.""
It should be defined which conversions are allowed/implemented for value_of and cast_to."

Relational Database access layer Johann Anhofer �15

"
The value class and it’s casts should be carefully designed and a separate proposal should be made for
it, because it would be useful for a bunch of other things (like JSON, DOM, etc).""
The sample implementation uses the tm structure for date/time and timestamp values. It would be better
to define separate date, time and timestamp classes to match the database data types. Time values up to
nanoseconds are in use by database systems. Timestamp types also have to include timezones to match
the need for cross-timezone timestamps.""
VIII.Examples!

1. Example #1: Connecting to a sqlite „in memory“ database!"
#include "connection.h"
#include "execute.h"
#include "transaction.h"
#include "transaction_scope.h" "
#include <iostream> "
using namespace cpp_db; "
int main()
{
 try
 {
 connection conn{“sqlite“};
 conn.open(“:memory:“); "
 // execute sample code here
 }
 catch(const std::exception &ex)
 {
 std::cerr << “EXCEPTION: “ << ex.what() << std::endl;
 }
} ""

2. Example #2: Using the statement object and execute!"
// use free function execute_ddl to create a table
execute_ddl(conn, R“(create table test_table (
 ID integer primary key,
 NAME varchar(50),
 AGE integer
);
)“); "
// insert 3 records
statement stmt{R“(insert into test_table(ID, NAME, AGE, SALARY)
 values(?, ?, ?, ?);)“, conn};
stmt.execute_non_query(1, "Bilbo Baggins", 121, 1000.0);
stmt.reset();
stmt.execute_non_query(2, "Frodo Baggins", 33, 500.0);
stmt.reset();
stmt.execute_non_query(3, "Samwise Gamgee", 21, 250.0); "
std::cout << "Cumulated salary: "
 << value_of<int>(
 execute_scalar(conn, R“(select sum(SALARY)
 from test_table
 where AGE between ? and ?)“
 , 10, 100)
)
 << std::endl; ""

3. Example #3: Use the result object to extract data from a query!"
result res{execute(conn, "select * from test_table where AGE < ?", 100)};

Relational Database access layer Johann Anhofer �16

"
// dump column names
for (int i = 0; i < res.get_column_count(); ++i)
 std::cout << res.get_column_name(i) << "\t";
std::cout << std::endl; "
// dump data
while(!res.is_eof())
{

std::cout << cast_to<std::string>(res.get_column_value("ID")) << "\t"
<< value_of<std::string>(res.get_column_value(1)) << "\t"
<< value_of<int>(res["AGE"]) << "\t"
<< value_of<double>(res[3])
<< std::endl; "

res.move_next();
} "

4. Example #4: Use transactions and transaction_scope!"
{

transaction_scope trs{&trans};
stmt.reset();
stmt.execute_non_query(4, "Gandalf the grey", 9899, 5000.0);

} "
5. Example #5: Bind parameters!"

statement stmt{R“(insert into test_table(ID, NAME, AGE, SALARY)
 values(@ID, @Name, @Age, @Salary);)“, conn};
stmt.bind(parameter(“@ID“, 1));
stmt.bind(parameter(“@Name“, “Saruman the white“);
stmt.bind(parameter(“@Age“, 9909);
stmt.bind(parameter(“@Salary“, 10000.0);
stmt.execute();

" "
IX. Acknowledgements!

Many thanks go to Herb Sutter for his inflaming call to proposals in his Going Native 2013 talks."
Reviewers: Joël Lamotte, Xavi Gratal, Roland Bock""
X. Changelog!

Second Draft!"
• Explain, that the document scope are SQL based relational databases in the title and introduction."
• Remove singleton driver_factory for driver registration, add registry functions instead (use make_-

driver instead of create_driver, remove registered_drivers function.), add a note about thread-
saftey (Section IV)."

• Add a brief description of the CppDb library (Section III) and add a reference to it (Section XI)."
• connection - constructor Add a reason why not to use an automatic open constructor, - open

Add a note about the key_value_pair type, add a note for throwing an exception if the connection is
already open."

• statement - Add footnotes to explain DDL and DML."
• driver_interface - Explain why raw pointers are used."
• value - Add new character types from C++ 11 (char16_t, char32_t)."
• Add a note about value in the todo’s (Section VII). "
Third Draft!"
• Add a changelog (Section X)""
Fourth Draft!"

Relational Database access layer Johann Anhofer �17

• Add a note to transaction_scope in case of exceptions."
• Add names of the reviewers"
• renamed the document to „Relational Database access layer“""
XI. References!

[1] N3612 Desiderata of a C++11 Database Interface by Thomas Neumann"
[2] N3458 Simple Database Integration in C++11 by Thomas Neumann"
[3] N3415 A Database Access Library by Bill Seymour"
[4] http://qt-project.org/doc/qt-5.1/qtdoc/topics-data-storage.html Data Storage QtDoc 5.1"
[5] http://pocoproject.org/docs/00200-DataUserManual.html POCO Data User Guide"
[6] http://www.firebirdsql.org Firebird opensource database"
[7] http://sqlite.org sqlite serverless SQL database engine"
[8] http://cppcms.com/sql/cppdb/ CppDB - SQL Connectivity Library"

