
1

Document number: N3851

Date: 2014-01-17

Reply-to: Łukasz Mendakiewicz <lukaszme@microsoft.com>

 Herb Sutter <hsutter@microsoft.com>

Multidimensional bounds, index and
array_view

Contents
Introduction .. 2

Motivation and Scope ... 2

Parallel Programming Perspective .. 3

Impact on the Standard .. 4

Design Decisions ... 4

bounds and index .. 4

array_view and strided_array_view ... 9

bounds_iterator .. 16

Possible Future Extensions ... 17

Prior Art ... 18

Acknowledgments ... 18

References .. 18

Appendix: Design Alternatives .. 19

Names ... 19

bounds and index .. 19

array_view and strided_array_view ... 20

2

Introduction
Programs performing computations on multidimensional data are relatively common (e.g. operations on

dense matrices or image processing) yet there is no standardized approach in C++ to express the concept

of dimensionality. This document aims to fill this gap in the Standard C++ Library by proposing the

following closely related types:

 bounds and index as means of defining and addressing multidimensional discrete spaces.

 array_view and strided_array_view as multidimensional views on contiguous or strided memory

ranges, respectively.

 bounds_iterator providing interoperability with iterator-based algorithms.

While the proposal builds on Microsoft experience of implementing and using similar extent, index and

array_view types in their data parallel programming model – C++ AMP [1] – we believe that these concepts

will also benefit a wider C++ community.

Motivation and Scope
As an example, consider a naïve matrix-vector multiplication algorithm that uses multidimensional

addressing.

Assuming the operands are an MxN matrix A and an N-vector B, the result is an MxN matrix C.
Corresponding objects are defined as follows, using vectors for the contiguous storage.

auto M = 32;
auto N = 64;

auto vA = vector<float>(M * N);
auto vB = vector<float>(N);
auto vC = vector<float>(M * N);

array_views, as introduced in this proposal, allow to conveniently store references to the data
along with their dimensionality and size information. Note in the following snippet that for two-
dimensional views a and c their rank must be specified explicitly (as the second template
argument) as well as their extent in each dimension (as the first constructor argument), while for
one-dimensional view b the same information is implicit.

auto a = array_view<float, 2>{ { M, N }, vA }; // An MxN view on vA.
auto b = array_view<float>{ vB }; // A view on vB.
auto c = array_view<float, 2>{ { M, N }, vC }; // An MxN view on vC.

Next, the bounds_iterator enables compatibility with iterator-aware algorithms, in this example

allowing to iterate over the bounds space (equivalent to the size of the c array_view) using the

for_each algorithm. Dereferencing the iterator provides an index of each location in the space to

the lambda expression, which is subsequently used to address data in the array_views.

bounds_iterator<2> first = begin(c.bounds()); // Named object for clarity.
bounds_iterator<2> last = end(c.bounds());
for_each(
 first, last,
 [&](index<2> idx)
 // or shortly: for(auto idx : c.bounds())
{
 float sum = 0.0f;

3

 for (auto i = 0; i < N; i++)
 sum += a[{idx[0], i}] * b[i];
 c[idx] = sum;
});

It is worth noting at this point that C++ and the Standard C++ Library already allow certain patterns for

expressing multidimensional data:

 vector of vectors, for example:

vector<vector<float>> A{ 32, vector<float>(64) };

 array type and std::array, for example:

float A[32][64];
array<array<float, 64>, 32> C;

Both of these approaches have drawbacks – the former does not guarantee contiguous memory

allocations between the sub-vectors, which is often beneficial in performance-critical scenarios; the latter

requires array extents as constant expressions1, which inhibits flexibility. Neither allows for convenient

addressing, sectioning or slicing the representation.

This proposal has two goals:

1. Provide multidimensional views over contiguous (single dimensional) storage, abstracting the

allocation from the usage2.

2. Enable universal multidimensional indexing, orthogonal to the former.

Parallel Programming Perspective
The proposed abstraction allows for a more efficient distribution of work among the processing threads

by making the iteration space larger and exposing more opportunities for runtime optimizations. In this

regard we have performed a simple experimental comparison of a naïve matrix multiplication algorithm

(with O(N3) complexity) using Microsoft Parallel Patterns Library [2] and the following two approaches

(also see Figure 1):

 “p_f + p_f” – parallelizing the two outermost for loops.

 “MD p_f_e” – collapsing the two outermost for loops into a single loop over two-dimensional

bounds and parallelizing the same.

1 This concern is partially addressed with dynarray and arrays of runtime bound introduced in the Array Extensions
TS [1].
2 Parallels can be drawn in this regard with the string_view proposal [7].

4

Figure 1 Two approaches to parallelizing a naïve matrix multiplication algorithm.

The obtained results indicate the advantage of the second approach, enabled by the proposal. For

1500x1500 matrix the improvement of the multidimensional indexing is close to 5%, with less than

1.5%RSD. Arguably, the same effect should be achieved if the user had chosen to manually flatten,

parallelize and then restructure the iteration space, it would however require sacrificing the logical

structure of the code and be error-prone.

Impact on the Standard
These changes are entirely based on library extensions and do not require any language features nor

changes in existing libraries.

Design Decisions
bounds is a type that represents rectangular bounds on an N-dimensional discrete space, while index is a

type that represents an offset or a point in such space (which in practice e.g. maps to a single element in

an array_view).

array_view is a multidimensional view on a storage contiguous in the least significant dimension and

uniformly strided in other dimensions. The type provides member functions for accessing the underlying

elements and reshaping the view. strided_array_view is a generalization of array_view, where the

requirement of contiguity in the least significant dimension is lifted.

bounds_iterator is a constant random access iterator over an imaginary space imposed by a bounds object,

with an index as its value type. It provides interoperability of the multidimensional structures with the

traditional iterator-based algorithms.

The following sections will describe the above types in greater detail.

bounds and index
We will be discussing these two types together as they share many characteristics. On a high level, the

index can be regarded as an N-dimensional vector (as a geometric quantity), while the bounds as an N-

5

dimensional axis-aligned rectangle3 with the minimum point at 0. (See also: Appendix: Design Alternatives,

I and II).

Figure 2 Graphical representation in the two-dimensional case.

The type of each component in both the index and bounds is ptrdiff_t4. The rationale behind is to be able

for the index to both address every byte in the largest allocation and express any offset in the same. (See

also: Appendix: Design Alternatives, III and IV).

There are additional invariants imposed on bounds, to which users must adhere when modifying the

object:

1) every component must be greater than or equal to zero

2) product of all components must not overflow ptrdiff_t

Although the invariants may appear overly strict, we believe they should be trivially satisfiable in practice.

Definitions
bounds and index are template classes with a single template parameter designating their rank (i.e. the

number of represented dimensions).

template <int Rank> class bounds;
template <int Rank> class index;

Rank is required to be greater than zero5.

Both classes define the same set of nested types used later in their interfaces and expose their rank value:

static constexpr int rank = Rank;
using reference = ptrdiff_t&;
using const_reference = const ptrdiff_t&;
using size_type = size_t;
using value_type = ptrdiff_t;

3 For most cases it can be thought of as a maximum point of such rectangle.
4 Should the LWG issue 2251 (“C++ library should define ssize_t”) be resolved, ssize_t might have been a better
choice.
5 Despite this fact, the template parameter is typed int for more robust error detection – passing a negative value
can be diagnosed in a static assertion.

6

Construction and Assignment
Analogous sets of constructors and assignment operators are available for bounds and index.

// For bounds<rank>:
constexpr bounds() noexcept;
constexpr bounds(value_type) noexcept;
constexpr bounds(const initializer_list<value_type>&) noexcept;
constexpr bounds(const bounds&) noexcept;
bounds& operator=(const bounds&) noexcept;

// For index<rank>:
constexpr index() noexcept;
constexpr index(value_type) noexcept;
constexpr index(const initializer_list<value_type>&) noexcept;
constexpr index(const index&) noexcept;
index& operator=(const index&) noexcept;

The default constructor zero-initializes all components.

There exists an implicit constructor from value_type, allowed only for rank = 1, which sets the single

component to the provided value. This allows the programmer to write cont[0] rather than cont[{0}] when

indexing one-dimensional containers. Analogous constructor is provided for bounds for commonality. (See

also: Appendix: Design Alternatives, V).

The initializer_list constructor is assigning the initializer list elements to the bounds or the index

components. The size of the initializer_list must be equal to the rank of the bounds/index type. (See also:

Appendix: Design Alternatives, VI).

Copy constructors and copy assignment operators for both types copy or assign all components element-

wise.

Accessing Components
The bounds and the index components can be accessed with the same set of subscript operator overloads.

reference operator[](size_type component_idx) noexcept;
constexpr const_reference operator[](size_type component_idx) const noexcept;

The functions return references to the component at the requested zero-based index. The precondition

that the argument must be less than rank applies to both functions.

Comparison Operators
Comparison is supported between two bounds objects of the same rank or two index objects of the same

rank (but not between bounds and an index).

// For bounds<rank>:
bool operator==(const bounds& rhs) const noexcept;
bool operator!=(const bounds& rhs) const noexcept;

// For index<rank>:
bool operator==(const index& rhs) const noexcept;
bool operator!=(const index& rhs) const noexcept;

operator== returns true iff all corresponding components of the two operands are equal. operator!=

returns true iff there is at least one pair of corresponding components that is not equal.

7

Arithmetic Operators
The arithmetic operators available for the bounds and the index are different following the differences in

their semantics. Generally, operations for these types follow the N-dimensional rectangle and the N-

dimensional vector models, accordingly – see Table 1 for an overview.

No overflow checking is performed on any of the following operations.

Table 1 Arithmetic operations allowed for bounds and an index; using notation: operand 1 type ⊙ operand 2 type → result type,
with the permitted operators listed below.

bounds<N> index<N>

bounds<N> ⊙ index<N> → bounds<N>
 + − += −=

index<N> ⊙ bounds<N> → bounds<N>
 +

index<N> ⊙ index<N> → index<N>
 + += − −=

bounds<N> ⊙ arithmetic type → bounds<N>
 * /
 *= /=

arithmetic type ⊙ bounds<N> → bounds<N>
 *

index<N> ⊙ arithmetic type → index<N>
 * /
 *= /=

arithmetic type ⊙ index<N> → index<N>
 *

 ⊙ index<N> → index<N>
 + −
 ++ −− (for N = 1, and also post- variants)

Arithmetic Operators for bounds

bounds support a range of addition and subtraction operators with an index of the same rank as the other

operand.

// Members of bounds<rank>:
bounds operator+(const index<rank>& rhs) const noexcept;
bounds operator-(const index<rank>& rhs) const noexcept;
bounds& operator+=(const index<rank>& rhs) noexcept;
bounds& operator-=(const index<rank>& rhs) noexcept;

// In the namespace scope:
bounds operator+(const index<rank>& lhs, const bounds& rhs) noexcept;

The member binary operator+ and operator- perform the corresponding operation component-wise on a

copy of *this and the function argument, returning the copy. operator+= and operator-= work analogously,

operating on and returning *this. The namespace scope binary operator+ works analogously operating on

and returning a copy of the bounds argument.

For example:

auto bnd1 = bounds<3>{ 3, 1, 4 };
auto idx = index<3>{ 2, -1, 0 };
bounds<3> bnd2 = bnd1 + idx; // bnd2 is { 5, 0, 4 }
bnd1 -= idx; // bnd1 is { 1, 2, 4 }

8

Arithmetic Operators for index

index supports a range of addition and subtraction operators between objects of the same rank.

index operator+(const index& rhs) const noexcept;
index operator-(const index& rhs) const noexcept;
index& operator+=(const index& rhs) noexcept;
index& operator-=(const index& rhs) noexcept;

The binary operator+ and operator- perform the corresponding operation component-wise on a copy of

*this and the function argument, returning the copy. operator+= and operator-= work analogously,

operating on and returning *this.

index& operator++() noexcept;
index operator++(int) noexcept;
index& operator--() noexcept;
index operator--(int) noexcept;

Pre- and post- increment and decrement operators have the traditional semantics, and as such are

allowed only on index with rank = 1. This decision follows the logic that e.g. ++idx shall be equivalent to

idx += 1, which with implicit constructor is naturally supported for rank = 1 as idx += index<1>{ 1 }, while

ill-formed for any other rank. (See also: Appendix: Design Alternatives, VII).

index operator+() const noexcept;
index operator-() const noexcept;

The unary operator+ returns *this, while the unary operator- returns a copy of the object with all

components negated.

Scaling Operators for bounds and index

The bounds and index types support an analogous set of scaling operators.

// Members of bounds<rank>:
template <typename ArithmeticType> bounds operator*(ArithmeticType v) const noexcept;
template <typename ArithmeticType> bounds operator/(ArithmeticType v) const noexcept;
template <typename ArithmeticType> bounds& operator*=(ArithmeticType v) noexcept;
template <typename ArithmeticType> bounds& operator/=(ArithmeticType v) noexcept;

// Members of index<rank>:
template <typename ArithmeticType> index operator*(ArithmeticType v) const noexcept;
template <typename ArithmeticType> index operator/(ArithmeticType v) const noexcept;
template <typename ArithmeticType> index& operator*=(ArithmeticType v) noexcept;
template <typename ArithmeticType> index& operator/=(ArithmeticType v) noexcept;

// In the namespace scope:
template <typename ArithmeticType>
 bounds operator*(ArithmeticType v, const bounds& rhs) noexcept;
template <typename ArithmeticType>
 index operator*(ArithmeticType v, const index& rhs) noexcept;

Any of the above functions shall not participate in overload resolution unless

is_arithmetic<ArithmeticType>::value is true.

The operators are defined as template functions and accept any arithmetic type, performing the

corresponding operation on each component of the bounds or the index object with the value of the

deduced type, following the usual arithmetic conversions, before being implicitly converted to the bounds

or the index value_type. In pseudo code:

9

result[i] = lhs[i] ⊙ v, for i=0..rank-1

For example:

index<2> idx{ 2, 3 };
index<2> res = idx * 1.5; // res is {3, 4}

bounds Functions
The bounds type defines the following member functions.

constexpr size_type size() const noexcept;
bool contains(const index<rank>& idx) const noexcept;
bounds_iterator<rank> begin() const noexcept;
bounds_iterator<rank> end() const noexcept;

size() returns a hyper volume of the rectangular space enclosed by *this, i.e. the product of all

components. With the aforementioned preconditions on all operations on bounds, the result will be

always well-formed.

contains() checks whether the passed index is contained within bounds – returns true iff every component

of idx is equal or greater than zero and is less than the corresponding component of *this.

begin() and end() return bounds_iterator for the space defined by *this and will be further discussed in

the bounds_iterator section.

array_view and strided_array_view
The array_view and the strided_array_view represent multidimensional views onto regular collections of

objects of a uniform type. The view semantics convey that objects of these types do not store the actual

data, but instead enables patterns congruent to that of random access iterators or pointers. This enables

the primary feature of array_view and strided_array_view – the capability to lift an arbitrary regular

collection into a logical multidimensional representation.

The collection over which the view will be created must be provided as a pointer or a reference to an array

or to a container. The size of the collection can be implied in limited cases, however usually it will be

explicitly specified by the user. For details, refer to the array_view Construction section.

The requirement on the shape of the furnished collection is the primary difference between the two types.

The array_view requires the data to be contiguous with a constant stride for each dimension, equal to 1

for the least significant dimension and increasing by the factor of the one less significant dimension’s size

for each more significant dimension. Colloquially, the array_view stride is identical with the stride of a

multidimensional array type (e.g. int arr[3][4][5]). The strided_array_view requires only a constant stride

for each dimension (most notably, the requirement of the unitary stride in the least significant dimension

is relaxed). It is used primarily to express sections of an array_view, however more advanced use cases

are possible – e.g. defining a view over specific subobjects in a collection of POD objects. An array_view

is implicitly convertible to a corresponding strided_array_view. (See also: Appendix: Design Alternatives,

VIII and IX).

The view semantics (or the “pointer semantics”) of the array_view and the strided_array_view lead to a

principle that any operation that invalidates a pointer in the range over which the view is created (i.e.

[av.data(), av.data() + av.size()) for array_view, or its generalization for strided_array_view) invalidates

10

pointers and references returned from the view’s methods6. A corresponding rule of thumb is that the

underlying container must remain in place as long as the view is used.

The corollary is a guarantee of coherence between the view and the underlying data, as if the data was

accessed through a pointer indirection.

For example:

auto vec = vector<int>(10);
auto view = array_view<int>{ vec };
view[0] = 42;
int v = vec[0]; // v == 42

Applying cv-qualifiers to Views and Their Element Types
A view can be created over an arbitrary value_type, as long as there exists a conversion from the pointer

to the underlying collection object type to the pointer to the value_type. This allows to distinguish two

levels of constness, analogously to the pointer semantics – the constness of the view and the constness

of the data over which the view is defined – see Table 2. Interfaces of both the array_view and the

strided_array_view allow for implicit conversions from non-const-qualified views to const-qualified views.

Table 2 Examples of the array_view constness duality (note strided_array_view is analogous).

…over… Mutable view…
(view = another_view is allowed)

Constant view…
(view = another_view is disallowed)

…mutable data
(view[1] = 42 is allowed)

array_view<int> view

c.f. int* view
const array_view<int> view

c.f. int* const view

…constant data
(view[1] = 42 is disallowed)

array_view<const int> view

c.f. const int* view
const array_view<const int> view

c.f. const int* const view

Relations Between the Types
The summary of relations between the proposed types and the select predating concepts are displayed

in Figure 3. Detailed semantics of the operations are described in the following sections.

Figure 3 Overview of relations between types.

6 This rule is aligned with the string_view proposal [7].

11

Furthermore, the following implicit conversions are allowed between the view types, considering the

const qualifier alone (the volatile qualifier is treated analogously):

 array_view<T, N> → array_view<const T, N>

 array_view<T, N> → strided_array_view<T, N>

 array_view<T, N> → strided_array_view<const T, N>

 strided_array_view<T, N> → strided_array_view<const T, N>

Definitions
The array_view and the strided_array_view are template classes with two template parameters – a type

template parameter designating the type the view presents; and an integral template parameter

designating the rank of the view.

template <typename ValueType, int Rank = 1> class array_view;
template <typename ValueType, int Rank = 1> class strided_array_view;

Rank is defined as int for commonality with bounds and index types; and similarly is required to be greater

than zero. Its default value is 1 for convenience.

The array_view and the strided_array_view define the same set of nested types used later in their

interfaces and expose their rank value:

static constexpr int rank = Rank;
using index_type = index<rank>;
using bounds_type = bounds<rank>;
using size_type = typename bounds_type::size_type;
using value_type = ValueType;
using pointer = typename add_pointer_t<value_type>;
using reference = typename add_lvalue_reference_t<value_type>;

array_view Construction and Assignment
Some of the following functions refer to a Container concept, which for the purpose of this document is

defined as a type which:

1) size() member function returns a type convertible to bounds<rank>::value_type

2) data() member function returns a type convertible to value_type* designating the address of the

first of size() adjacent objects of the value_type

Should this concept be strengthened to the Standard C++ definition of the Container, there would

necessarily be added an additional overload to each function accepting the Container with a generic

array_view parameter type instead.

The following constructors and an operator are available for the array_view.

constexpr array_view() noexcept;

template <typename Container>
 constexpr explicit array_view(Container& cont) noexcept;

template <typename ArrayType>
 constexpr explicit array_view(ArrayType& data) noexcept;

template <typename ViewValueType>
 constexpr array_view(const array_view<ViewValueType, rank>& rhs) noexcept;

12

template <typename Container>
 constexpr array_view(bounds_type bounds, Container& cont) noexcept;

constexpr array_view(bounds_type bounds, pointer data) noexcept;

template <typename ViewValueType>
 array_view& operator=(const array_view<ViewValueType, rank>& rhs) noexcept;

The default constructor creates an empty view – bounds() is zero for all components and data() is nullptr.

The single parameter Container constructor shall not participate in overload resolution unless the

Container template argument satisfies the aforementioned Container concept. It is allowed only for

rank = 1, what enables the view bounds to be deduced from the container size(). The view is created over

the container data(). Note this constructor also allows for converting array_views with rank > 1 to

array_views with rank = 1, i.e. flattening.

For example:

auto vec = vector<int>(10);
auto av2 = array_view<int, 2>{{ 2, 5 }, vec }; // 2D view over vec
auto av1 = array_view<int, 1>{ vec }; // 1D view over vec
auto avf = array_view<int, 1>{ av2 }; // flattened av2; equivalent to av1

The single parameter ArrayType constructor shall not participate in overload resolution unless the
following expression is true:
is_convertible<add_pointer_t<remove_all_extents_t<ArrayType>>, pointer>::value

&& rank<ArrayType>::value == rank.
Scilicet, the ArrayType must be an array type with the value_type underlying type and the same rank as

the view. The view will be created over the array data with the bounds derived from the array type

extents.

For example:

char r[3][1][2];
array_view<char, 3> av{ r }; // av.bounds() is {3, 1, 2}

The single parameter array_view constructor shall not participate in overload resolution unless

is_convertible<add_pointer_t<ViewValueType>, pointer>::value is true. This overload serves as a copy

constructor but also allows for implicit conversions between related array_view types, e.g. converting a

view over mutable data to a view over constant data. The resulting view adopts the shape and the location

of the original, effectively changing only the value_type.

The two-parameter constructor with the bounds_type and the Container parameters shall not participate

in overload resolution unless the Container template argument satisfies the aforementioned Container

concept. The view with the specified bounds is created over the provided container. There is a

precondition that the container size() must be greater than or equal to the bounds size(). Since the

array_view meets the Container requirements, this constructor may be used for reshaping the view with

the same or different rank.

The two-parameter constructor with the bounds_type and the pointer to the value_type parameters has

a precondition that the pointed to storage contains at least as many adjacent objects as the bounds size().

The view with the specified bounds is created over the pointed to collection.

The assignment operator is analogous to the single parameter array_view constructor.

13

strided_array_view Construction and Assignment
We have decided against providing a rich set of constructors for the strided_array_view similarly to the

array_view rich set of constructors. It is based on the assumption that the path of least resistance should

guide users to the more versatile array_view. The following constructors and an operator are available for

the strided_array_view.

constexpr strided_array_view();

template <typename ViewValueType>
 constexpr strided_array_view(const array_view<ViewValueType, rank>& rhs) noexcept;

template <typename ViewValueType>
 constexpr
 strided_array_view(const strided_array_view<ViewValueType, rank>& rhs) noexcept;

constexpr
 strided_array_view(bounds_type bounds, index_type stride, pointer data) noexcept;

template <typename ViewValueType>
 strided_array_view&
 operator=(const strided_array_view<ViewValueType, rank>& rhs) noexcept;

The default constructor creates an empty view – all components of bounds() and stride() of the created

object are zeroes.

The single parameter array_view constructor shall not participate in overload resolution unless

is_convertible<add_pointer_t<ViewValueType>, pointer>::value is true. This constructor enables

implicit conversion of an array_view to a strided_array_view, adopting the bounds, the stride and the

location of the original object.

The single parameter strided_array_view constructor shall not participate in overload resolution unless

is_convertible<add_pointer_t<ViewValueType>, pointer>::value is true. Alike the analogous array_view

constructor, this function serves as a copy constructor and allows for conversion between related

strided_array_view types.

The last constructor creates a view with all its properties explicitly specified. There are two preconditions

– for any index idx, if bounds.contains(idx):

1) for i = [0, rank), idx[i] * stride[i] must be representable as ptrdiff_t; this is established in order to

enable the implementation to use ptrdiff_t for the internal address calculation without

overflowing

2) (*this)[idx] must refer to a valid memory location

We intentionally do not impose further restrictions on the stride, such as positivity or monotonicity in

order to enable more advanced use cases such as self-aliasing or transposed views.

The assignment operator is analogous to the single parameter strided_array_view constructor.

Observers
The following observer functions are available both for the array_view and the strided_array_view.

constexpr bounds_type bounds() const noexcept;
constexpr size_type size() const noexcept;
constexpr index_type stride() const noexcept;

14

bounds() returns the bounds of the view.

size() returns the size of the view, i.e. it is equivalent to bounds().size().

stride() returns the stride of the view. The stride of an array_view is inferred from its bounds, following

the logic drafted above for its collection requirements. Although this makes the function redundant for

that type, it is provided nevertheless for the commonality of the two view types, which can be leveraged

in a generic code.

array_view Observers
The following function is available only for the array_view.

constexpr pointer data() const noexcept

The contiguity requirement of the array_view allows for the data() function, which returns a pointer to

the storage over which the view was defined.

Accessing Elements
The following function is available both for the array_view and the strided_array_view. (See also:

Appendix: Design Alternatives, X).

constexpr reference operator[](const index_type& idx) const noexcept

The subscript operator allows to access the elements of the collection over which the view is created. The

precondition for the function is that bounds().contains(idx). The function returns a reference to an object

which address is calculated using Equation 1, where: data is the result of data() for the array_view or the

pointer supplied to the strided_array_view constructor (possibly implicitly) and stride is the result of

stride().

Equation 1 array_view address calculation.

𝑎𝑑𝑑𝑟 = 𝑑𝑎𝑡𝑎 + ∑ 𝑖𝑑𝑥[𝑖] × 𝑠𝑡𝑟𝑖𝑑𝑒[𝑖]

𝑟𝑎𝑛𝑘

𝑖=0

Note that the subscript operator is a const function, even when returning a non-const reference. This is

an intended design, akin to the pointer.

Slicing
Slicing is available for both the array_view and the strided_array_view.

// For array_view<value_type, rank>:
array_view<value_type, rank - 1>
 operator[](typename index_type::value_type slice) const noexcept;

// For strided_array_view<value_type, rank>:
strided_array_view<value_type, rank - 1>
 operator[](typename index_type::value_type slice) const noexcept;

Slicing a view is an operation which returns a new view of an analogous type with a rank smaller by one.

It is equivalent to “fixing” the most significant dimensions of the original view, as depicted on Figure 4.

The function should not participate in overload resolution unless the rank of the view is greater than one.

The precondition for the function is that the slice argument must be less than bounds()[0].

15

Figure 4 Slicing example.

The syntax and semantics of the slicing operation allow also for cascading indexing, which enables

patterns congruent with the “traditional” multidimensional addressing.

For example, for an appropriate 3-dimensional view av the two following lines are equivalent:

av[1][2][3] = 42;
av[{1, 2, 3}] = 42;

Sectioning
Sectioning is available for both the array_view and the strided_array_view. (See also: Appendix: Design

Alternatives, XI).

strided_array_view<value_type, rank>
 section(const index_type& origin, const bounds_type& section_bnd) const noexcept;

strided_array_view<value_type, rank>
 section(const index_type& origin) const noexcept;

Sectioning a view is an operation which returns a new view of the same rank referring to the section of

the original, as depicted on Figure 5. Since the contiguity of the result cannot be guaranteed, the returned

object is always a strided_array_view. In the overload where the section bounds are not provided, they

are assumed to extend to the remainder of the original view. The preconditions of the function require

that for any index idx, if section_bounds.contains(idx), bounds().contains(origin + idx) must be true (i.e.

the newly created view is subsumed by the original).

Figure 5 Sectioning example.

Comparison with the string_view
The string_view proposal [3] introduces the titular string_view type, providing similar semantics to the

array_view type from our proposal. In our view the proposals are complementary rather than competitive.

Particularly, a string_view is to an array_view what a string is to an array.

16

The single contention point we have identified is the decision in the string_view proposal to always

assume the constness of the basic_string_view, by rationale that it is a more common case. Therefore the

closest counterpart to a basic_string_view<char> would be an array_view<const char> in our proposal.

While we believe it may be confusing to users, at this point we cannot offer any alternative.

bounds_iterator
The bounds_iterator is provided as an interoperability feature, enabling the usage of the multidimensional

indices with the existing non-mutable iterator-based algorithms. The bounds_iterator is dissimilar to other

C++ Library iterators, as it does not perform iterations over containers or streams, but rather over an

imaginary space imposed by the bounds. Dereferencing the iterator returns an index object designating

the current element in the space.

Since the bounds_iterator provides the capability to traverse a multidimensional discrete space with the

single dimensional iterator semantics, it is necessary to linearize the space. The iteration shall begin with

an index which all coordinates are zeroes and increment the least-significant coordinate (i.e. idx[rank - 1])

first. Upon reaching the imaginary bound of the rectangular space in the given dimension (i.e.

bounds[rank - 1]), the implementation shall wrap the least-significant coordinate around to 0 and

increment the next more significant element. The process should be analogously applied to the more

significant elements up to the point where the index reaches the largest value for all elements while

contained within bounds, at which point subsequent increment reaches the past-the-end value (see

visualization on Figure 6). The linearization of the bounds_iterator is congruent with the memory layout

defined by array_view, thus using these two types together maintains the optimal access pattern.

Figure 6 Visualization of bounds_iterator traversal over one- and two-dimensional bounds.

The bounds_iterator is always a constant iterator, as there is no reasonable meaning to modifying the

values of its current index.

Since the bounds_iterator is a proxy iterator, it cannot fulfill all requirements of the random access iterator

concept. Specifically, the incompatibility is the inability to present a persistent object in the iteration

space, which is surfaced as the bounds_iterator's reference type (i.e. the return type of operator*) being

a value type – const index<Rank>. Likewise, the result of operator-> (of a pointer to index<Rank> type)

must be considered invalidated after any operation on the iterator. We believe however that the

discrepancy is small enough to be condoned, as it is expected not to cause any issues in the typical use

cases. Furthermore, as a precedence, a similar divergence is often present in the implementation of the

std::vector<bool>::iterator.

Definitions
The bounds_iterator is a template class with a single template parameter designating the rank of the

bounds over which it iterates.

17

template <int Rank> class bounds_iterator;

Rank is required to be greater than zero, with the same rationale as for other types in the document.

The following iterator traits are provided as nested types.

using iterator_category = random_access_iterator_tag;
using value_type = const index<Rank>;
using difference_type = ptrdiff_t;
using pointer = const index<Rank>*;
using reference = const index<Rank>;

Construction and Assignment

explicit bounds_iterator(bounds<Rank> bnd, index<Rank> curr = index<Rank>{}) noexcept;
bounds_iterator(const bounds_iterator& rhs);

bounds_iterator& operator=(const bounds_iterator& rhs);

The first constructor creates an iterator over the specified bounds, with the initial position of the iterator

set to the provided index. The precondition is that bnd.contains(curr) unless bnd.size() = 0.

The copy constructor and the copy assignment operator have trivial semantics of copying or assigning the

bounds and the current index of the iterator.

Other Operations
The bounds_iterator may be obtained from the bounds object using the following namespace-scope

functions or the corresponding member functions of the bounds type.

template <int Rank> bounds_iterator<Rank> begin(const bounds<Rank>& bnd) noexcept;
template <int Rank> bounds_iterator<Rank> end(const bounds<Rank>& bnd) noexcept;

begin returns an iterator over the provided bounds, with the initial position set to zero.

end returns an iterator over the provided bounds, with the initial position set to the past-the-end value.

Possible Future Extensions
While we kept the proposed design to a minimal self-contained scope, our experience with C++ AMP

suggests more versatile additions might be possible.

An array_view with an implicit data transfer and caching. Even though C++ does not recognize disjoint

memory spaces within one computer system (which is often the case for the dedicated CPU and the

dedicated discrete GPU memory), the growing trend in the end-user application programming is to

leverage the compute resources of a remote computer system (viz. “the cloud”). While the problem is

involved, one prerequisite is to accommodate for the required data transfer between the user system and

the compute back-end, and vice-versa. We believe that the solution might be provided either by a novel

type similar and related to the array_view or through an additional policy introduced on the array_view

template. Note that C++ AMP has been providing the data transfer and the caching capabilities within one

computer system since its first release in 2012.

A floating point-based addressing would be a continuous counterpart to the discrete addressing provided

by the index. Such addressing is used primarily in computer graphics scenarios, where texture sampling

(i.e. reading discrete container elements with filtering, giving the impression of continuity [4]) is pervasive.

18

It could be accommodated by a similar to index – float_index type, maybe along with a corresponding

float_bounds type.

The bounds_iterator linearization in the current design is congruent with the memory layout imposed by

the array_view, however there are other reasonable options, e.g. transposed. We believe that such

alternatives could be provided as iterator adapters.

Prior Art
The Boost Multidimensional Array Library [5], apart from providing a multidimensional container template

– which counterpart we purposefully did not aim to achieve in this proposal – offers multidimensional

view capabilities as adapters for arrays of contiguous data. While the general concepts are similar to our

proposal, the syntax and semantics details differ. Specifically: there are no novel types analogous to

bounds and extent, but rather collections of scalar types or series of subscript operators are used; there

is a separate type introduced to express views over constant data; semantics are not congruent with

pointers, e.g. view’s assignment operator performs a deep copy; there is not a separate type for strided

views.

array_ref, as described in “Proposing array_ref<T> and string_ref” [6], was the counterpart to the

aforementioned string_view in an early version of the proposal. The type did not provide

multidimensional capabilities.

valarray, defined in the Standard C++ Library, provides some view-like capabilities with slice_array and

gslice_array classes, however they are defined only over valarray container. Furthermore there is no

support for multidimensionality, apart from nesting the template types. Lastly, as these types are suited

primarily for numeric calculations, we viewed extending them a less viable path than introducing our novel

types.

Acknowledgments
David Callahan, Yossi Levanoni and Herb Sutter have designed the original C++ AMP interfaces.

Gabriel dos Reis, Artur Laksberg and Gor Nishanov have contributed to the final shape of this proposal.

References

[1] Microsoft, "C++ AMP," 2012. [Online]. Available: http://msdn.microsoft.com/en-

us/library/vstudio/hh265137(v=vs.110).aspx.

[2] Microsoft, "Parallel Patterns Library (PPL)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/dd492418.aspx.

[3] J. Yasskin, "string_view: a non-owning reference to a string, revision 5, N3762," 1 September 2013.

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3762.html.

[4] The Khronos Group, "OpenGL Shading Language," 2013. [Online]. Available:

http://www.opengl.org/documentation/glsl/.

19

[5] R. Garcia, J. Siek and A. Lumsdaine, "Boost.MultiArray," 2000. [Online]. Available:

http://www.boost.org/doc/libs/1_55_0/libs/multi_array/doc.

[6] J. Yasskin, "Proposing array_ref<T> and string_ref, N3334," 14 January 2012. [Online]. Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3334.html.

[7] L. Crowl, "Working Draft, Technical Specification — Array Extensions, N3820," 10 October 2013.

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3820.html.

Appendix: Design Alternatives

Names
We are fond of the names we have settled on in C++ AMP: extent and index. Unfortunately the name

extent is already used in the Standard C++ Library (as a type trait for querying array type extents). One

noteworthy alternative we have considered was indexes – denoting the fact that the object of such type

is “a bag of index objects”, this option was abandoned after we realized how confusing the name is in

conversation – “does ‘indexes’ mean two index objects or one indexes object”.

bounds and index
I. The bounds represent the axis-aligned N-dimensional rectangle with the minimum point at 0. An

alternative representation would be one with an arbitrary origin (minimum point). We have

decided against such design, because it would double the size requirement of the type, and more

importantly – we have tried this approach in the Developer Preview version of C++ AMP (the type

was then called grid) and received negative feedback as being too complex. If necessary, users

can easily emulate a similar behavior by using bounds alongside with an index designating the

desired offset.

II. We have explored a design alternative to the dual bounds and index types, where three distinct

types were introduced instead – bounds<N> as an N-tuple of size_t for defining bounds, index<N>

as an N-tuple of size_t for indexing elements and index_diff<N> as an N-tuple of ptrdiff_t for

difference calculation or applying an offset. We found the resulting type proliferation daunting

and it still posed the mentioned below (IV) problems of mismatching signed and unsigned

component types in user programs.

Another alternative design might have called for a single type to represent both the bounds and

the index. Although we agree that it would be a valid approach, we prefer the one where types of

different responsibilities and semantics are clearly separated. Specifically, it would be impossible

to express the N-dimensional rectangle and the N-dimensional vector semantics of the bounds

and the index, which we view as important type safety features.

The corollary of the above reasoning is that any generic type (e.g. array, tuple) cannot substitute

the bounds and the index either, unless they would be defined with a distinctive element type

(e.g. array<index_t, 2> instead of index<2>), allowing for discriminating them for the relevant

20

operations. In spite of the fact that a similar approach to introducing new types is common in

some functional languages, we view it as inconsistent with the common practice in C++.

III. The index and the bounds value_type is ptrdiff_t. An alternative approach would be to expose the

type as a template type parameter of the index and the bounds. We have deemed it undesirable

as this would preclude the secondary contribution of the proposal – providing a standard

multidimensional indexing type.

IV. The bounds value_type is ptrdiff_t. An alternative approach would be to define the type as size_t.

We have decided against it, as the index and the bounds are almost always used together and

mismatching signed and unsigned component types would complicate user programs with

conversions and/or warning noise.

V. Implicit construction of an index or bounds from value_type is allowed only for rank = 1. An

alternative design would have allowed construction from a single value_type for any rank. There

is however no agreement in the existing practice whether the omitted components should be

filled with the same replicated value or with zeroes, thus it is the least confusing to provide

neither.

VI. The initializer_list constructor available for both the index and the bounds requires the initializer

list’s size to be equal to the rank. We view the fact that the precondition cannot be enforced by

the type system as unfortunate. We have explored an alternative design where the constructor

parameter type would be const array<value_type, rank>& instead of the initializer list, which

would address half of the concern by enforcing the upper bound on the number of arguments

(i.e. cannot be more than the rank). However the prevailing downside of this approach is a syntax

quirk requiring the brace initialization of such type to be expressed with two pairs of braces (i.e.

alt_index<2> idx {{1,2}}).

VII. An alternative design of the increment and the decrement operators for the bounds and the index

was used in the C++ AMP library, where these operators were supported for any rank, performing

the corresponding operation element-wise on all components – effectively traversing the space

diagonally. We found this in practice to be more often surprising than useful.

array_view and strided_array_view
VIII. A design alternative to the dual array_view and strided_array_view types was used in the

C++ AMP library, where there was a single type with the relaxed requirements (alike the

strided_array_view). We have chosen to isolate the contiguous case in the current proposal on

the grounds that: 1) on modern computer systems the memory access pattern is crucial for

performance and as such should be explicit, 2) the guarantee on contiguity allows us to specify

for array_view a safe data() member function, which enables interoperability with

dimensionality-unaware algorithms (including C functions).

IX. The observation that the array_view is a special case of the strided_array_view may lead to an

alternative design, where the array_view is derived from the strided_array_view. We have

decided against such composition as the current design allows for more space-efficient

21

implementation of the array_view (its stride can be implied from its bounds). With the implicit

conversion to the strided_array_view available, we believe the usability should not be severely

handicapped.

X. A possible extension to the current array_view and the strided_array_view design offering

operator[] would be to provide at(const index_type&) function, similarly to the std::vector. Such

function could be throwing an exception when the supplied index were out-of-bounds. We are

averse to this idea as it would conflict with the principle of fast-failing on programmer’s error,

which we assumed throughout the design.

XI. For the array_view and the strided_array_view, an overload of section function with a single

bounds parameter and the origin assumed to be 0 is not provided, as it would conflict with the

single parameter index overload when the caller is using uniform initialization (e.g.

av.section({1, 2})), and is easily achieved by using the first overload with an empty initializer for

the origin (i.e. av.section({}, {1, 2})).

	Introduction
	Motivation and Scope
	Parallel Programming Perspective

	Impact on the Standard
	Design Decisions
	bounds and index
	Definitions
	Construction and Assignment
	Accessing Components
	Comparison Operators
	Arithmetic Operators
	Arithmetic Operators for bounds
	Arithmetic Operators for index
	Scaling Operators for bounds and index

	bounds Functions

	array_view and strided_array_view
	Applying cv-qualifiers to Views and Their Element Types
	Relations Between the Types
	Definitions
	array_view Construction and Assignment
	strided_array_view Construction and Assignment
	Observers
	array_view Observers
	Accessing Elements
	Slicing
	Sectioning
	Comparison with the string_view

	bounds_iterator
	Definitions
	Construction and Assignment
	Other Operations

	Possible Future Extensions
	Prior Art
	Acknowledgments
	References
	Appendix: Design Alternatives
	Names
	bounds and index
	array_view and strided_array_view

