
Stroustrup Array Alternatives N3810 October 2013

N3810
Bjarne Stroustrup

2013-10-13

Alternatives for Array Extensions

Bjarne Stroustrup

The most important aspect of an “array alternative” is that it enables simple and efficient use of a run-
time-specified amount of stack storage and provides an alternative to the traditional problems of “lost”
size and “lost” type that make direct use of arrays error-prone.

Here, I will record some reflections based on the array/dynarray discussions at the Chicago meeting with
some brief analysis of the alternatives as a start of a discussion. I consider a resolution urgently needed.
We need arrays with run-time-specified bounds and safer access to such storage “yesterday.”

VLAs and ARBs
The Array of Run-Time Bounds (ARBs, N3497 Runtime-sized arrays with automatic storage duration by
Jens Maurer) is a great simplification of, and improvement over, C’s Variable-Length Arrays (VLAs). First
of all, an ARB is a conventional C-style array:

const int n1 = 99;
void f(int n2)
{
 int a1[n1]; // an array (traditional)
 int a2[n2]; // an array (ARB)
 int* p = a1;
 p = a2; // a1 and a2 are of the same type
}

That is, a programmer can use an array without having to know whether the expression specifying the
number of elements was a constant or a variable. In addition, ARBs do not imply separate syntax or new
rules for declarations and argument passing.

However, being arrays, ARBs suffer the usual problems associated with their number of elements not
being available unless the user specifically “remembers” it and the type used to access elements can
implicitly change after the array name has decayed to a pointer. For example:

 void draw_n(Shape*p, int n) // poor code/interface
 {
 p[n].draw();
 }

1

Stroustrup Array Alternatives N3810 October 2013

 void g(int n)
 {
 Circle ac[n];
 Shape* p = ac; // array decay and Derive* to Base* implicit conversion
 ac[7].draw(); // decay and subscripting (no range check)
 p[7].draw(); // disaster: wrong offsets (and no range check)
 draw_n(ac,n/2); // ask for disaster
 }

I assume that Circle is publicly derived from Shape and that sizeof(Circle)>sizeof(Shape) so that
subscripting a Shape* give different offsets from subscripting a Circle*. Yes, this is poor code, but it is
free of casts and unions, compiles without warnings, and has potentially disastrous effects.
Unfortunately, neither (pointer,count) interfaces nor arrays nor class hierarchies are uncommon.
Stronger: (pointer,count) interfaces are common, array decay is fundamental to much C-style code, and
implicit Derived* to Base* conversion essential for much object-oriented programming.

If we have only ARBs for stack storage, these problems are not addressed, (pointer,count) interfaces will
become more common (and probably “baked into” ABIs), and we will have encouraged a lowering of the
level of programming from the use of containers and algorithms to the use of arrays and pointers. This is
a topic of major importance because the importance of stack storage (and any other storage that works
well with concurrency and doesn’t require synchronization for allocation and deallocation) is increasing.

ARB has an obvious weakness: we cannot ask an ARB for its size. Thus, we need “special wording” to
make a range-for work for an ARB and we can’t easily pass [begin(a),end(a)) pairs to an algorithm. We
need a simple and elegant way to place elements on the stack and pass some form of reference to
another function (e.g., an algorithm). VLAs provide sizeof() to find the end of allocated memory, but I
consider that seriously flawed – it reports the size in bytes (chars) rather than in number of elements.

 void f(int n);
 {
 Circle ac[n];
 draw_n(ac,sizeof(ac)/sizeof(*ac));
 }

This may be familiar to many, but it is error-prone (not everyone uses sizeof(ac)/sizeof(*ac)), verbose,
and if draw_n() expects a pointer into an array Shapes that call is still wrong. The “sizeof trick” is familiar
to C programmers, but for people brought up with just about any other language it is seen as a weird
flaw. We should not confuse “familiar” with “simple.”

We introduced std::array to allow people to handle such problems for T[n] when n was a constant. We
need something at least as elegant for T[n] when n is a variable. When we accepted ARBs that was the
basis for our consensus – ARBs on their own would not have passed.

An class interface for stack memory
So, we need a higher-level, less error-prone interface to stack memory to complement ARBs for people
who prefer not to deal directly with arrays. The crucial properties of such an interface is

2

Stroustrup Array Alternatives N3810 October 2013

• It will be on the stack (or equivalent) for a local object
• It does not implicitly “decay” to a pointer
• We can ask it for its number of elements (and/or its end).

This is essential and must not be lost as a design is adjusted to meet other/further needs or to address
problems.

For example, there are architectures on which the amount of stack space is severely limited. Thus, there
have been designs where the elements end up being allocated using new when the amount of stack is
deemed insufficient. There are problems with such a design:

• Using new/delete leaves the user vulnerable to locking problems, fragmentation problems, and
inefficiencies. This approach is not generally acceptable for embedded systems.

• Ideas of dynamically deciding how much stack is left for an array are impractical in the face of
hardware and fundamental software restrictions

On the other hand, using a “side stack” for array elements can be acceptable (a “handle” is left on the
call stack as the local object while the elements are elsewhere).

I assume that array overflow problems are handled identically for an array interface class and an ARB.

Dynarray
Aka C++ Dynamic Arrays described in N3532 - 2013-03-12 by Lawrence Crowl and Matt Austern was
voted into the Working paper, but suffered national body (and other) objections for not guaranteeing
stack allocation, not providing full allocator support, and/or suffering constructor ambiguities . N3532
explains the basic ideas:

“Instead of adopting C variable-length arrays, we propose to define a new facility for
arrays where the number of elements is bound at construction. We call these dynamic
arrays, dynarray. In keeping with C++ practice, we wish to make dynarrays usable with
more than just automatic variables. But to take advantage of the efficiency stack
allocation, we wish to make dynarray optimizable when used as an automatic variable.

Therefore, we propose to define dynarray so that compilers can recognize and
implement construction and destruction directly, without appeal to any particular
standard library implementation. However, to minimize the necessary burden on
compilers, we propose that dynarray can be implemented as a pure library, although
with lost optimization opportunity.

We believe that the compilers can introduce the optimization without impact on source or
binary compatiblity. There may be some change in code profiles and operator new calls
as a result of that optimization, but such risks are common to compiler and library
upgrades.

3

Stroustrup Array Alternatives N3810 October 2013

Syntactically, our proposal follows the lead of std::array and std::vector containers.
Semantically, our proposal follows the lead of built-in arrays. That is, we do not require
more out of std::dynarray element types than we do of standard array element types.”

My reading of the facts and of the opinions I have heard expressed is that the desire to support
dynarray as a general container (e.g., allocator support) let to a larger than expected class, complicated
optimizations, and distracted from its (IMO) primary role as an accessor of stack-allocated objects. As
time passed, dynarray accreted aspects of “an ordinary container” (leaving only its fixed size after
construction to distinguish it from vector), and implementations focused on that and failed to provide
the crucial optimizations for local objects. That “crucial optimization” requires compiler support.

This led to a desire among some (notably me) for bringing dynarray back to basics.

Bs_array
In discussions, I have mentioned that what I thought we needed was a “basic stack-allocated array type
that relates to an array with dynamic extent like std::array relates to an array with static extent.” Here is
a minimal outline:

template<class T>
class bs_array { // bike shed issue: find a proper name for a basic stack allocated array
 using value_type = T;

 bs_array(int n); // n elements

 // default copy, no move, maybe copy to vector/other_containers

 T& operator[](int i); // ith element
 const T& operator(int i) const; // ith element
 T& at(int i); // ith element, range check
 const T& at(int i) const; // ith element, range check

 T* begin() { return a; } // or define externally
 const T* begin() const { return a; }

T* begin() { return a+n; }
 const T* begin() const { return a+n; }

 int size();
 T* data();
private:
 T a[n]; // for exposition only, a is stack allocated
};

The point is that a bs_array can be allocated on the stack only, does not implicitly “decay” to a pointer
and does not forget its number of elements. You can safely pass a reference to a bs_array, you can run a
range-for loop over it.

4

Stroustrup Array Alternatives N3810 October 2013

Like dynarray, implementing a bs_array requires “compiler magic” so it has to be a compiler-supported
standard-library construct. In particular, I do not consider a (pointer,size) representation plus a
new/delete implementation acceptable (in this, bs_array differs from dynarray). Use of the general
free store implies the use of synchronization in a multithreaded environment and the possibility for
fragmentation. Neither is acceptable in a range of likely application, including some high-performance
computing and many embedded systems. A “side stack” for elements of a bs_array would be an
acceptable implementation technique for high-performance and embedded systems. Its use would
imply little overhead, would not consume much call stack, would imply no added locking, and would not
cause fragmentation. I consider this common to all acceptable implementations. I imagine the use of a
“side stack” to be an implementation detail, depending on implementation concerns, rather than
programmer choice for an individual object.

Unlike dynarray, bs_array does not try to be a general container. In particular, it is not meant for
member variables.

Quoting Matt Austern:

“the argument about dynarray that I found most convincing was Richard Smith's: what if a user
writes

dynarray<int> a(10);
f(a);
// do something more with a

and the definition of f is

void f(dynarray<int>& a) {
 a.~dynarray<int>();
 new(a) dynarray<int>(50);
}

If dynarray is anything like a normal C++ class, this is clearly legal code. Conversely: if we want
non-heroic compilers to be able to implement bs_array without dynamic allocation, we need
to find some way of saying that code like this is illegal. (Maybe: you can't take the address of or
form references to a bs_array?)”

In a reflector thread, Chandler Carruth provided a “nice” collection of examples that would lead to
disaster with dynarray and any other container that tried to be both a general container and ensure
stack allocation. I present(ed) bs_array as an alternative that doesn’t suffer such problems.

I thought/think of bs_array as an experimental minimal class to supplement ARBs. Obviously, code like
f() has to be avoided. I don’t care much how that is done. The bs_array constructor is (obviously?)
“magic,” and I suppose the destructor must also be. Only their conventional use for a local variable are
acceptable.

5

Stroustrup Array Alternatives N3810 October 2013

Explicit Arrays
In EWG at the Chicago meeting, the idea of a modifier to an array declaration controlling its decay was
aired (in several variations). Consider:

void f(int n)
{
 explicit Circle ac[n]; // bike shed warning!
}

Here, the prefix explicit indicates that ac decays to an accessor object holding (&ac[0],n). Here, I will
use the name array_ref for the accessor:

void g(array_ref<Circle> c) {
{
 for (auto& x : c)

x.draw();
 for(auto p = c.begin(); p!=c.end(); ++p)

p->draw();
 c[7].draw();
 Shape* p = &c[7]; // on your head be it
}

void f(int n)
{
 explicit Circle ac[n];
 Shape* p = ac; // error: explicit arrays do not decay to pointers
 Shape* q = &ac[0]; // OK: pointers convert
 array_ref<Circle> r = ac; // OK: explicit arrays converts to (decays to) array_refs

 g(ac);

 for (auto& x : ac)

x.draw();
 for(auto p = ac.begin(); p!=ac.end(); ++p)

p->draw();
}

Consider some obvious questions:

• Why explicit? In the EWG discussions several alternative notations were suggested, including a
suffix class (because the array behaves a lot like a class) and a declarator operator to combine
with [] as opposed to a “storage class specifier” applying to a declaration containing a []. I am
currently sticking with explicit because, like other uses of explicit, it inhibits a conversion.

• Why array_ref? Because that name is descriptive; it refers to an array – it has reference
semantics. It seems that the ideal accessor type is very close to array_refs that has been in use
in various places.

6

Stroustrup Array Alternatives N3810 October 2013

• What about multidimensional arrays? I see no problem with multidimensional arrays as long as
only one dimension is specified at run time. That’s why I use the “storage class specifier”
explicit, rather than some modification of the declarator operator [].

• How does subscripting work? Since there is no array decay, the formal description of how []
works on an explicit array has to be a bit different, but the implementation can be identical to
subscripting other arrays. The array_ref class needs a [] operator.

This solution differs from the dynarray and bs_array solutions by
• Having a cleaner separation between compiler and library concerns
• By not providing a container (or “almost container”) class.

If you want a container for elements on the stack, you must build it out of array_refs. For example:

void f(int n)
{
 explicit int a[n];
 bs_array ba {a};
 dynarray da {a};
 // …
}

I fear that the notational overhead of having to use two definitions would be unpopular, and a barrier to
use of the containers as (opposed to array_ref).

Explicit arrays are most useful on the stack, but they don’t need to be just for local objects. We could
generalize the idea to allow explicit for every array to get namespace and member explicit arrays (in
which case explicit would probably have to be a suffix). I suspect such a generalization to be “mission
creep.” I suspect that most uses will not be of elements that may or may not be on the stack. Rather, the
programmer wants to assure that elements are on a stack or on stack-like storage if the machine
architecture is not suitable for large arrays on the call stack.

Naturally explicit would apply both to ARBs and arrays with constant bounds:

const int n1 = 99;

void f(int n2)
{
 int a1[n1]; // an array (traditional)
 int a2[n2]; // an array (ARB)
 int* p = a1;
 p = a2; // a1 and a2 are of the same type

explicit int a3[n1]; // an explicit (traditional) array
 explicit int a4[n2]; // an explicit array (ARB)
 array_ref<int> q = a3;
 q = a4; // a3 and a4 are of the same type

// (if we allow assignment to array_ref)

p = q; // error: a1 and a3 are of different types

7

Stroustrup Array Alternatives N3810 October 2013

q = p; // error

}

Array Constructors
In a message to the –ext reflector, J. Daniel Garcia suggested a solution based on allocation of an
array member in the scope in which its class object is created:

What we need is:
a) Allow an ARB data member of unspecified size.
b) Allow to set the size of the ARB in construction.

template <class T>
class bs_array {
public:
 bs_array(int n) : v[n]{}, sz{n} {}
 // ...

private:
 T v[]; // Alternate syntax could be T[] v;
 int sz;
};

I see this as a generalization of ARBs. We get:

class Array {
public:
 Array(int s) : sz{s}, elem[s]{}
 {
 // …
 }
 int size() { return sz; }
 // …
private:
 int sz;
 double elem[];
};

void f(int n)
{
 Array as {n}; // elements on stack
 Array* p = new Array{n}; // elements on heap
 Static Array sas {n}; // elements in static storage
}

8

Stroustrup Array Alternatives N3810 October 2013

As for explicit arrays, generalizing to heap and static storage may or may not be desirable. The elem[s]{
element initializer } syntax seems fine and is unambiguous. The T elem[]; syntax may clash with C’s
empty array bounds, so Daniel’s T[] elem; alternative may be preferable.

An array constructor allocates its array elements in the memory of its surrounding scope. If that scope
must be a stack scope, we have something roughly equivalent to the “explicit array” solution.

If this approach is preferred, I we can define dynarray or bs_array using array constructors. Now instead
of the dynarray class being “magic,” it is the constructors and destructor that are. Like for “explicit
arrays,” the separation between library and language concerns seems cleaner.

Daveed suggests that the mapping to underlying storage should be described entirely within the
constructor declaration; not the data members nor the definition. E.g.:

 struct MyArray {
 MyArray(int n) double storage[n];
 int size() const { return s; }
 private:
 MyPtr<double> p;
 int s;
 };

 MyArray::MyArray(int n): s(n), p(storage) {}

This cleanly separates the implementation from the interface. The role of the “double storage[n]” is
to provide sufficient information in the constructor declaration for an implementation to allocate
sufficient memory with seeing the constructor definition.

I like the idea of specifying “all magic” in one place, but I can’t say that I find the syntax intuitive or
attractive. It could be seriously messy for a class with many such arrays. Maybe we could simplify by
requiring the constructors to be defined inline if we have an ARB member:

 struct MyArray {
 MyArray(int n, int m) :ad{n}, ac{m} {}
 int size() const { return s; }
 private:
 double ad[];
 int ac[];
 };

We already have “special rules” for constructors of classes with const or reference members. I like this
notation for its simplicity. One problem would be that changing a bound from a constant to a variable
would force inline definition, but that seems minor compared to adding new syntax.

Final Thoughts (for now)
So, which solution do I like best? “Array constructors” by a small margin over “explicit arrays” provided
we can have the/a simple syntax for “array constructors.” For “explicit arrays” I would need more use
cases to be sure. Furthermore, we need to decide which standard container(s) – if any – we would

9

Stroustrup Array Alternatives N3810 October 2013

supply with array constructors (dynarray? bs_array?). How we could build a container out of explicit
arrays? I suspect we should not expand the scope of a solution from stack storage to members, free
store, and static memory.

10

	Alternatives for Array Extensions
	Bjarne Stroustrup
	VLAs and ARBs

	An class interface for stack memory
	Dynarray
	Bs_array
	Explicit Arrays
	Array Constructors
	Final Thoughts (for now)

